IRISH-DUTCH PEATLAND STUDY GEOHYDROLOGY AND ECOLOGY

O. P. W. Wildlife Service, Dublin

 Department of Nature Conservation. Environmental Protection and Wildlife Management, The Hague

• Geological Survey of Ireland. Dublin

National Forest Service, Utrecht

HYDROLOGY OF CLARA AND RAHEENMORE BOGS

EVAPOTRANSPIRATION, STORAGE COEFFICIENTS, LATERAL FLOW IN THE ACROTELM, CATCHMENT DEFINITION, TEST OF THE PIEZOMETER METHOD FOR HYDRAULIC CONDUCTIVITY

> J.W. van 't Hullenaar J.R. ten Kate

Agricultural University, Department of Hydrology, Soil Physics and Hydraulics Nieuwe Kanaal 11, 6709PA Wageningen, The Netherlands.

Sketch of Clara Beg by Catherine O' Brien, Clara, County Offaly.

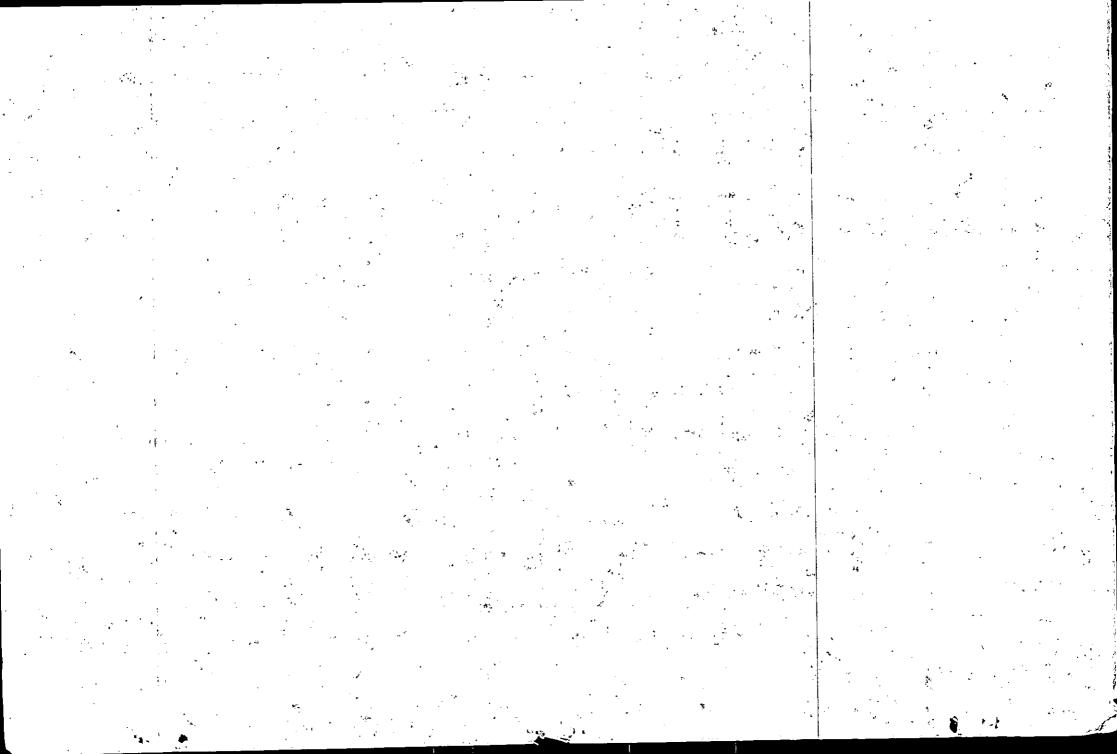
- 12 - 🖗

o

.

8. 10

HYDROLOGY OF CLARA AND RAHEENMORE BOGS

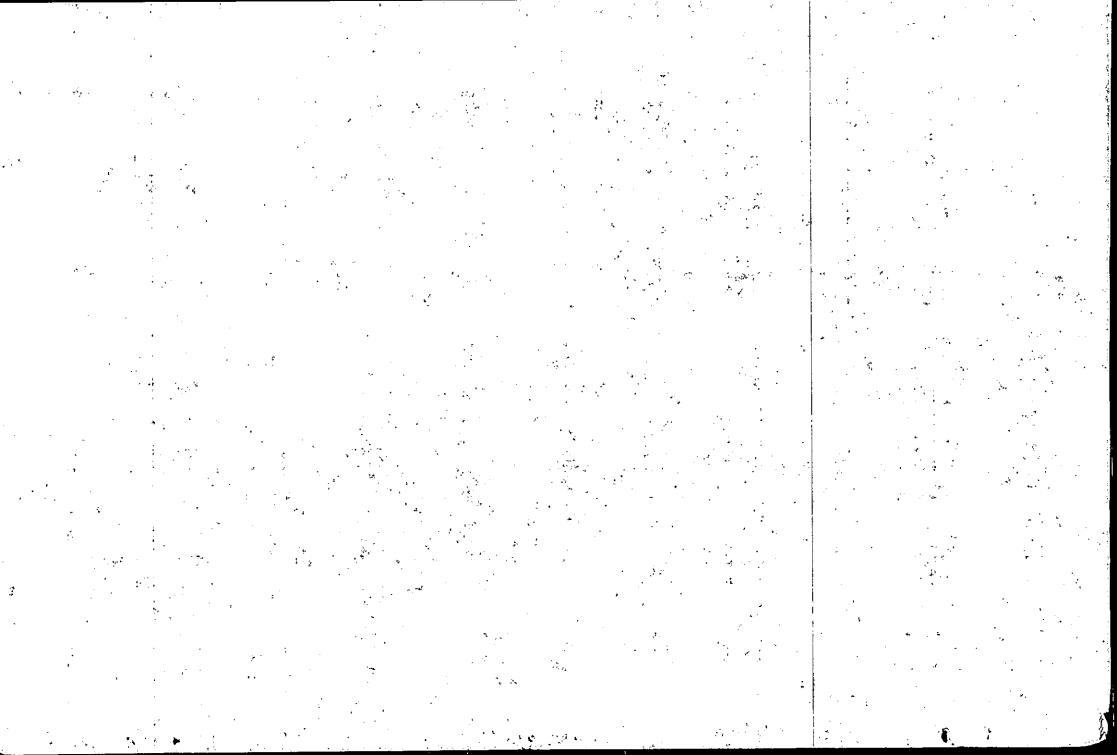

EVAPOTRANSPIRATION, STORAGE COEFFICIENTS, LATERAL FLOW IN THE ACROTELM, CATCHMENT DEFINITION, TEST OF THE PIEZOMETER METHOD FOR HYDRAULIC CONDUCTIVITY

> J.W. van 't Hullenaar J.R. ten Kate

August 1991 👘

Agricultural University

Department of Hydrology, Soil Physics and Hydraulics Nieuwe Kanaal 11, 6709PA Wageningen, The Netherlands.


PREFACE

This research was done as a part of our study land- and watermanagement (cultuurtechniek), at the agricultural university in Wageningen (The Netherlands). It is an 860 s.b.u. (study hours) graduate subject (agro-)hydrology.

Though we were already happy with our opportunity to go to the raised bogs in Ireland, our experiences transcended all our expectations. It was not only an interesting research, but there were also the very very nice and hospitable people from Clara, especially the ones visiting this particular pub.

It was good to do the research as a part of a project. This way we met a lot of nice fellow-students with whom we enjoyed our stay very much (understatement). On the other hand we learned much by working in a project and it made the involvement in the work very large. Together with being abroad in Ireland these were the ideal circumstances to do a research.

We would like to thank the supervisors for their information and cooperation in the project. We especially would like to thank Sake Van Der Schaaf for his accompany and the supply of equipment. Also special thanks to Margaret Keegan, who supported us both in working and relaxing. At last we would like to thank Jim Moore for the interesting excursion to several raised bogs in the area, and sociable drinking and sleeping!

CONTENTS

PREFACE .

CONTENTS

SUMMARY

- INTRODUCTION 1
- 2 WATERBALANCE

- 2.1 Introduction
- Methods and materials 2.2

EVAPOTRANSPIRATION 3

- 3.1 Introduction
- Methods and materials " 3.2
- 3.3 Results and conclusions

STORAGE COEFFICIENT

- 4.1 Introduction
- 4.2 Methods and materials
- Results and conclusions 4.3
- ACROTELM 5

5.1 Introduction

- Methods and materials, 5.2
- Transmissivity/hydraulic conductivity test 5.2.1
- 5.2.2 Acrotelm mapping
- Results and conclusions 5.3

PIEZOMETER TEST 6.

6.1 Introduction

- 6.2 Methods and materials
- 6.3 Results and conclusions

7 BOUNDARY SURVEY

7.1	Introduction	÷s	
7.2		2	48
7.3	Methods and materials	- M	48
	Results and conclusions	•	- 49

page

9

13

13

13 ά.

15

15

15

18

21

21

21

22

24

24

25

26

32

34

41

41.

42

46

48

50

52

,c

LITERATURE

APPENDICES

, .[,]

SUMMARY

Mainly because of turf cutting, raised bogs have become rare in the north-western part of Europe. From an ecological point of view they are important. Therefore the Irish government has acquired raised bogs as reserves. Sound hydrological management for them is needed because their systems are disturbed by drainage and cutting at the edges. An Irish-Dutch project is set up to find solutions concerning the hydrological management. The project is a cooperation between the Irish Wildlife Service and the Dutch National Forest Service (S.B.B.). The Agricultural University of Wageningen is mainly involved in the hydrology of Raheenmore bog.

The main topics of this report are studies on factors of the waterbalance, i.e. the evapotranspiration, storage coefficient and the lateral flow in the acrotelm. Also an attempt is made to make a calculation of the waterbalance. Further on a piezometer test and modifications on the boundary survey of the catchment area have been carried out.

It was the intension to make a calculation of the waterbalance in this research. Thanks to data that were not available at the time the report was written this was not possible. Only the method is described in this report.

The evapotranspiration is measured with lysimeters. A lysimeter is a weighable container filled with a column of soil and vegetation. There are four types of vegetation studied, all with both well and poor developed acrotelms. Every vegetation and acrotelmtype is measured in duplicate so there are 16 lysimeters in total. The actual evapotranspiration is being measured. As the lysimeters are isolated from their surroundings water has to be added or subtracted. The evapotranspiration is calculated by the difference in weight, the measured rainfall and the known quantities of added or subtracted water. For a good comparison the LAI (Leaf Area Index) and SCI (Sphagnum Cover Index) of the lysimeters are measured.

This research has only been running for 6 weeks yet. There are too few measurements to draw good conclusions. The values that are measured will be compared with calculations with the Penman formula using meteorological data of the three weather stations Mullingar, Birr and Derrygreenagh. The data were not available at the time this report was written, so this will be done by other students.

With the lysimeters also the storage coefficient of the upper layer is measured. It is calculated by the difference in volume of water and the change of waterlevel in the lysimeter. The storage coefficient is measured in two ways, with water adding data and with weighing data. Because of the abrupt adding or subtracting the storage coefficients calculated with adding data are smaller than those calculated with weighing data, the difference is approximately 0.1. The storage coefficients of the different lysimeters vary between 0.2 and 0.5. Mostly the coefficients in lysimeters with poor developed acrotelms are smaller than those with well developed acrotelms. In the Sphagnum lysimeters there is no difference. All the conclusions are conditional because they are based on a few measurements, later on other students will give more results.

The main topic of this research is the study of the lateral flow through the acrotelm. The acrotelm is the top layer of a raised bog with living Sphagna and their water supply. It's hydrological characteristics are its high permeabilities/ transmissivities; fluctuating groundwaterlevel and change in height, caused by shrinkage and swelling of the bog.

The acrotelm research has been split in two parts. In the first part the transmissivity/conductivity is measured along two transects and in the second part a mapping of colour and humification of the whole acrotelm on the bog has been done. The humification is correlated to the transmissivity/ conductivity, in order to try to extrapolate the transmissivities on the whole bog.

The transmissivity/conductivity is very complex because of the heterogeneous structure of the acrotelm, the non stationary flow caused by a change in watertable during the season and the downward decreasing permeability. During the season there is also a change of conductivity because of swelling and shrinkage of the the acrotelm. The mutual differences between. transmissivities/conductivities are very big. Therefore three methods are used: the Augerhole, Pit Bailing and Guinness method. The latter one is specially developed for measurements of high transmissivities in the acrotelm. All methods are based on the same principle: by measuring the velocity of water flow into a borehole the permeability/transmissivity of the surrounding medium is derived

Because of the hummock-hollow complex, the differences in transmissivities at short distance can be very large. The hollows are more permeable than the hummocks and form a network. As these are the parts that are most important for the discharge, for the measurements the hollows are chosen.

It seems that there is a correlation between the humification degree and the transmissivity/hydraulic conductivity. An acrotelm with a humification degree between 2 and 4 has a high permeability (25 to 1000 m/d), while an acrotelm with a humification degree of 6 or 7 can be considered to be impermeable (0.1 to 7 m/d). Yet, it is not clear in what way an acrotelm with humification degree 5 should be interpretated. For that more measurements have to be added.

The large variation in the values of the transmissivities/ hydraulic conductivities can be associated with the large heterogeneity of the acrotelm structure at short distance, depending on the hummock and hollow complex.

The decreasing permeability with depth has not sufficiently been tested yet. For that more measurements are required.

The pattern of the acrotelm thickness that is obtained from the mapping is very heterogeneous. To the edges the acrotelm thickness decreases and near the edges it is (almost) absent. In the hollow network on the central part of the bog, the acrotelm is continuously present. At flat parts it is thick. On the slopes the acrotelm is thin or absent. This is not only the case at the edges, but also in the central part of the bog. It seems as if the acrotelm is built up like a staircase. Sometimes the stairs are separated by more humified parts. The stairs seem to form basins. With a low water level these basins are isolated and the discharge decreases strongly.

There is a second permeable layer between 0.5 and 1.0 meter below the surface with a humification degree of 4 and 5.

In the project the piezometer method has been used in different ways for measuring permeabilities in the catotelm. the results were being questioned. A piezometer test has been set up to sort out this problem. It deals with 3 subjects:

- filter geometry,

- sealing of the tube, and

- 3 different methods; falling-, rising- and constant head. The test is carried out in duplicate and has been done on 2 plots.

When equal piezometers and tests are mutually compared the values differ a lot. They differ from 1 to 20 times. This means that the test field is not homogeneous. The remaining results have to be interpretated carefully. Another test has to be done, if possible in a homogeneous area.

With all methods, the values measured in piezometers with furrel are much higher than those with cork. The furrel probably drives a hole around the piezometer, through which the water can flow away (or in) very fast. This means that the present piezometers used in the project, all with furrels, are not suitable to measure permeabilities.

With these tests no influences of filter length and perforation rate have been determined.

When the three methods are compared there is a big difference in magnitude in determined hydraulic conductivities. At the first plot the rising head tests give bigger values than the falling head tests. In the second plot the opposite happens. This difference between test 1 and 2 can be caused by the difference in time between placing of the tubes and measuring. At the second plot the hydraulic conductivities measured with the constant head show no distinctive difference with the rising head method. The hydraulic conductivities measured with the falling head are much higher. May be the high water pressure at the start of the falling head test causes a hole around the piezometer, through which the water flows away easily. For the estimation of the catchment area the boundary survey has been modified. Drains are taken into account as well, piezometers are placed there. More piezometers and more measurements have to be done to give accurate results.

CHAPTER 1

INTRODUCTION

Intact raised bogs in the north-western part of Europe are very rare. In the past centuries serious damage has been done to the ecosystems by turf cutting and other anthropogenic influences. The few survivors are important from an ecological point of view, mainly because of their particular vegetation and their remarkable nutrient supply : the ombrotrophy, i.e. the sole manner of feeding by precipitation (Streefkerk en Casparie, 1989).

In the Midlands of Ireland raised bogs still occur. In the last few years the Irish government acquired various bogs as reserves and it hopes to purchase several more of such areas in the years to come. Sound hydrological management for them is needed because their hydrological systems are easily disturbed by drainage and cutting on the edges.

The raised bogs in the central part of Ireland can be compared with the original Dutch systems. Therefore the knowledge gathered in The Netherlands in the course of restoration and hydrological management of remnants of raised bogs is relevant to the Irish ones. On the other hand the knowledge and experience in Ireland with regard to intact bogs is of great importance to the restoration projects in The Netherlands.

<u>General analysis of the problems</u>

The hydrological problems in and around bogs can be divided in two categories, namely:

- a. drainage problems:"
 - superficial drainage by ditches cut in the surface of the bog,
 - drainage of marginal zones as a result of peat cutting,
 - marginal drainage by deep ditches, and
 - effects of arterial drainage.

b. conservation problems.

In the safeguarding of bogs, problems arise in identifying and analyzing the hydrological conditions for conservation. These problems are, for example, the lack of specific hydrological knowledge regarding the bog system in general and the lack of specific knowledge regarding the effects of hydrological interventions.

Wageningen research

6

The research of the Wageningen students mainly takes place on

Raheenmore Bog. The location of the bog in Ireland is shown in figure 1.1.. It is situated in County Offaly near Tyrrellspass.

Raheenmore bog is a particular example of a raised bog. It rises above the surrounding area and is positioned in a basin. On the edges some cutting has been done and on the eastern side an old. drainage system is present. This system has already been filled up by Sphagnum growth, but watertransport is still taking place there. Around the bog a deep drain has been dug.

Figure 1.1 Location of Clara and Raheenmore bog in Ireland (from H.A. Lensen, 1991)

The second bog involved in the Wageningen research is Clara bog (for location see figure 1.1). It is not a representative example of a raised bog because it is not situated in a typical basin and the "new road" runs through the bog. This has a big influence on the hydrology of the bog and makes the hydrological system of the bog very complex. Therefore it is decided to work Raheenmore out first.

Clara bog is very special. It has soak systems and it is the largest raised bog remaining in Western-Europe. Two third of the bog is nature reserve. The other part is still private property where turf cutting takes place. On the eastern half of the bog a lot of drains were dug just before the bog became nature reserve.

The three main topics of the Wageningen hydrology work in 1991 on Raheenmore are:

-the waterbalance, -the influence of cutting on bog edges on the hydrologic system of the bog, and

-the modelling of the hydrological system.

This research

This research deals for a great deal with studies for the waterbalance. It was the intention to make a calculation of the waterbalance. However, thanks to the often promised but never valised delivery of the necessary discharge data by T. Joyce of the O.P.W. this is not possible in this report. In chapter 2 only the method is described.

Further on this research has dealt with three factors of the waterbalance which are still unknown: the evapotranspiration, the storage coefficient and the lateral flow through the acrotelm. This work will be continued by other students. In chapter 3 the evapotranspiration will be discussed and in chapter 4 the storage coefficient. In chapter 5 the main subject of this research, the acrotelm, will be discussed.

In previous research work in this project different piezometer methods and materials have been used to measure permeabilities of the catotelm. The different results were being questioned. A piezometertest, discussed in chapter 6, is set up to sort out this problem.

The discharge of the drains on Raheenmore is continuously measured by a recorder. This is done to calculate the surface runoff and lateral seepage loss of the waterbalance. To use the measured discharges in the waterbalance the catchment area has got to be known. For the determination of this area a boundary survey has been carried out. The survey was not working sufficiently, the influences of drains were not taken into account. Some modifications are made. This subject is discussed in chapter 7.

Some work has been done on density research. This research is set up to study the influence of cutting on the edges and of the 'new road' on the bog. The road and the cutting cause subsidence which influences the hydrology of the bog. The development of density with depth on a certain point of the bog is a parameter that might give information about this. By taking a saturated sample with a certain volume the density of that sample can be determined. It is determined by the quantity of water that the sample contains. This subject will not be discussed in this report. For that, too few measurements have been done. The next Wageningen students, B. Sytsma and A. Veldhuizen, will continue this research and will describe it entirely in their report.

The monitoring and levelling work both on Clara and Raheenmore bog has been continued. The monitoring consists of: -measuring waterlevels in tubes on Clara and Raheenmore, -measuring waterlevels of open water and near recorders, -measuring rainfall,

-checking of the rainfall- and waterlevelrecorders and changing the charts, and

-processing measured data.

This work took thirty percent of time of the Wageningen students. The monitoring of the hydraulic heads in tubes is carried out ones a fortnight. The checking of the discharge and groundwaterrecorders and the raingauges is weekly. Because of the movement of the bog, the recorders and tubes have to be levelled every 3 months. For the levelling Benchmarks have been placed. They are levelled by the O.P.W. All levels are regarded to BOD.

The monitoring and levelling will not be discussed in this report. The measurements add no new information to this research at this moment. They are already discussed in the previous reports of Lensen (1991) and Huisman (1990).

CHAPTER 2

WATERBALANCE

2.1 INTRODUCTION

The water-balance is the equation of amounts of water involved in inflow, outflow, withdraw and change in storage over a certain period in a certain area (C.H.O, 1986). With a waterbalance knowledge is gathered of the pedological and hydrological characteristics of an area. By calculating water-balances, different kinds of raised bogs can be compared, i.e. damaged bogs can be compared with living ones.

The waterbalance of a raised bog over a certain period of time can be written as follows (Streefkerk and Casparie, 1989):

P - E - R - L - D = AS

P = precipitation(mm)E = evapotranspiration(mm)R = surface runoff(mm)L = lateral seepage loss(mm)D = downward vertical seepage(mm)AS = change in storage(mm)

Raised bogs lie higher than their surroundings, so there is no surface, lateral or upward inflow. The only source of inflow from water is precipitation.

A few factors could be added to this equation (Ingram, 1983). At first, in a bog there can also be pipeflow. This is flow in pipes and fissures which are not directly open to the atmosphere. Secondly, open channel flow can be added in case drains have been dug in the bog.

Calculations of the waterbalance have not been made. There were no discharge data available yet and researches for other factors are still running or being improved. In the next part only a description of the methods and materials is given.

2.2 METHODS AND MATERIALS

The waterbalance is made for a catchment area on Raheenmore. In the catchment area several measurements take place to estimate the different factors of the waterbalance.

The surface runoff and the lateral flow are both intercepted by drains. The whole drain system (see appendix 19) on Raheenmore

(1)

has two outlets. There is one drain where leakage takes place, it was supposed to be part of the catchment area. The boundary in the drains, where the division between the two outlets is, still has to be investigated (see also chapter 7). The drains of the catchment area all go to one outlet where the discharge is measured by a V-Notch and a waterlevel recorder. The drains are all very old and fullgrown with Sphagnum. It is very hard to distinguish lateral flow and surface runoff from channel flow because the first two go over in the latter. In spite of the blocks in the drains there is a discharge of water from the bog through the drains.

The precipitation is measured by 3 raingauges. Two handgauges_of_ 5" are read every week and one 7" syphon is continually registrating. The 5" raingauges are taken as absolute. The syphon values are corrected by the average of the two handgauges. For the waterbalance the average value of the two 5" handgauges is used.

To measure the evapotranspiration and the storage coefficient (the latter is needed to calculated the change of storage) a research with lysimeters is set up (see chapters 3 and 4). The measurements on the lysimeters have been going since April. This means that the period is too short to draw conclusions for the evapotranspiration and storage coefficient. In a later stage the results will be used for the waterbalance.

The evapotranspiration can also be calculated by the Penman formula with meteo data. These data are available of the weather stations of Mullingar and Birr. These are the two nearest big weather stations for meteodata of the Penman formula. Near to Raheenmore (about 10 km) there is a small weather station called Derrygreenagh. It is owned by Bord Na Mona. The data of this station can also be used for the calculation of the evapotranspiration. B. Sijtsma and A. Veldhuizen will involve these data in their research. The results with the Penman formula can be compared with the values of evapotranspiration that are measured with the lysimeters.

A mobile weather station will be placed on Clara as well. When it is installed the data can be used and compared with the data of the other stations and the results of the lysimeters.

The vertical seepage is estimated. It is highly dependent on the unknown vertical resistance of the underlying layer. This layer exists of lagustrine clay. The vertical seepage is estimated to be 40 mm a year (oral communication J. Streefkerk, 1991).

The change in storage is derived from the waterlevel and storage coefficient measurements. They are measured with the monitoring of respectively the tubes and the lysimeters (the storage coefficient will be discussed in chapter 4).

CHAPTER 3

EVAPOTRANSPIRATION

3.1 INTRODUCTION

The (actual) evapotranspiration is the total evaporation flux of an overgrown surface. It includes the evaporation of intercepted water, the soil evaporation and the transpiration. The transpiration is the evaporation flux through leaf pores and the cuticula of a dry leaf surface of the plants (C.H.O., 1986).

The evapotranspiration has to be taken into consideration, as it is an important factor of the waterbalance. Data from studies of raised bogs in Ireland show evapotranspiration values with an order of magnitude of 450 to 550 mm per year (Burke, 1975).

The determination of the evapotranspiration is normally done by elimination of water supply and water discharge factors of the waterbalance or by formulas based on weather measurements. In this study a direct method is being used. The evapotranspiration is determined with weighable lysimeters. The results will be compared with the evapotranspiration calculated with meteorological data with the Penman formula. As said in chapter 2 a mobile weather station will be installed. The data from the weather stations Mullingar, Birr and Derrygreenagh can also be used.

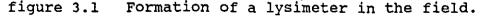
1.0

.

5. 55

W^a


, i.


保約

÷.

3.2 MATERIALS AND METHODS

A lysimeter is a weighable container with a column of soil with vegetation. The lysimeters used on Raheenmore are 0,50 meter high and have a diameter of 0,40 meter. The bottom is completely sealed. The baskets are placed in holes in the bog in which they fit exactly (figure 3.1).

In this way a system is created where the circumstances are as much as possible the same as in the surrounding environment. Only the lateral and vertical flow of water through the soil is not possible.

The lysimeters are weighed with the help of a tripod, a pulleyblock with six sheaves, a weighscale and a three armed bars with hooks, which can be put in the eyes of the lysimeters. If, for a certain period, the difference in weight and the rainfall are measured, the evapotranspiration can be calculated.

Because the actual evapotranspiration is being determined, the waterlevel has to change equally with that of the sites where the lysimeters are filled. As the lysimeters are isolated from their surroundings, water has to be added or subtracted. This means that next to the rainfall and difference in weight also the added weight or volume of water has to be taken into account to calculate the evapotranspiration.

The evapotranspiration over one period is calculated with the following formula:

(2)

$$E = P + (V_{A} - AW) / A$$

E = evapotranspiration (mm) P = precipitation (mm) V_a = volume of added water (1) A = surface area of lysimeter (m²) AW = volume change of stored water, determined by difference in weight (1)

The values for one period are transmitted in average daily values. With these values it is easier to make a mutual comparison in time.

Sixteen lysimeters have been filled with four different kind of vegetation, so there are four lysimeters of each kind of vegetation. These vegetation are the most dominating types on the bog. The vegetation are:

- Calluna vulgaris (Heather) and some Erica (also Heather) with Sphagnum (Peat Moss),

- Eriophorum vaginatum (Cotton Grass) with Sphagnum,

- Narthecium ossifragum (Bog Asphodel) with Sphagnum, and

- Sphagnum.

Of each kind of vegetation there are two with poor and two with well developed acrotelms (see chapter 5). A scheme of the formation is given in figure 3.2. In the appendix 2 (fixed data lysimeters) the position of the locations where the lysimeters have been filled is given. The location is expressed in coordinates of the grid system of Raheenmore bog. On the bog the grid is marked with pegs. A map with the grid is given in appendix 1. The lysimeters have been moved to one spot to facilitate the monitoring. Their location is K20 880 (see grid appendix 1). Here new holes have been dug, in which the lysimeters fit as well as possible. This is important because too big holes will give extra heating of the sides of the lysimeters, which might result in an increase in evapotranspiration.

vege- tation	Calluna 🤤 vulgaris	Narthecium ossifragum	Eriophorum vaginatum	Sphagnum spec.
acro- telm				
poor	1,2	. 3,5	4,6	7,8
well	15 , 16	13 , 14	11 , 12	9,10

figure 3.2 Test scheme lysimeter research.

Once per month the Leaf Area Indexes (L.A.I.) of Calluna vulgaris, Narthecium ossifragum, and Eriophorum valinatum are determined. The L.A.I. is the ratio of the leaf area and the surface area. For E. vaginatum and N. ossifragum this is done as follows:

- dividing of the surface area into 4 parts,

- counting of the leaves in 1 part, and

- measuring the surface area of several leaves.

Then the total leaf area is:

leaf area = $4 \times n \times a$

n = amount of leaves in 1 part
a = average surface area of one leaf

C. vulgaris has a huge number of small leaves which are hard to measure. Therefore a constant leaf area of separate leaves in time is considered and the amount of increase of leaves on 5 standard tops is counted. Further on, the amount of tops in a quarter of the surface area are counted. Then the total leaf area is:

(3)

(4)

leaf area = $4 \times n_t \times n \times a_c$

 n_t = number of tops in one quarter of the lysimeter n = average number of leaves on a standard top

a_c = constant surface area of a standard leaf

For Sphagnum it is very hard to estimate leaf areas. Therefore only an estimation of the covering degree of the living Sphagna is made: the Sphagnum Cover Index (S.C.I.).

Further on, also the L.A.I. of the dead material is estimated. This is an important factor for the interception of the precipitation. In the period this research is done, April and May, the L.A.I. of dead material is considered to be constant with time, so it is only measured once. The index is formed by the twigs or stems of the plants, the dead leaves and the dead material laying on the surface. The surface areas of the twigs or stems and leaves are derived in a similar way as discussed for N. ossifragum and E. vaginatum. The LAI of the dead-material onthe ground is derived by estimating the cover degree, multiplied by a factor. This factor is dependent on the shape and composition of the material. The material forms flat slices and is for the greater part not laying on the surface. Therefore the factor is estimated to be 2.

With the help of mapping of vegetation plots and aerial photographs the vegetation types and distribution of them on the bog will be investigated. With this and the results of the lysimeter research and the calculations with the Penman formula the evapotranspiration of the catchment area of the whole bog can hopefully be determined.

The lysimeters are also being used to determine the storage coefficient and the degree of swelling/shrinking of the upper part of the bog. The storage coefficient will be dealt with in chapter 4 of this report. The change in surface level of the lysimeters will be analyzed by successive students. There was only one measurement done yet so it is not possible to have any discussion on this subject.

3.3 RESULTS AND CONCLUSIONS

The data used for the calculations are in appendix 2. The evapotranspiration results from 15 April to 23 May are given in table 3.1. In table 3.2 the L.A.I. and S.C.I. are given.

The results are discussed briefly. There are not enough results yet to make statistically correct comparisons. Further on there were no weather reports of the months April and May available at the time the analysis was made. Therefore the Penman values could not be calculated and be compared with the lysimeter values. This should be done by the new students as soon as the weather reports are available.

All evapotranspiration values are rather high. This is probably caused by a combination of good weather and a high waterlevel (around 5 cm below surface), which caused a high soil -evaporation.

.18

In May the Sphagnum and Calluna vulgaris lysimeters have the highest evapotranspiration values. As there is almost no rainfall in May, the evaporation of intercepted water and the soil evaporation decrease and the transpiration relatively increases. This means that Sphagnum and Calluna vulgaris probably have the highest transpiration.

There is no distinctive difference between the evapotranspiration values of the poor and well developed acrotelms. This is possible as the waterlevels in both kind of lysimeters have been high.

No correlations can be found between the evapotranspiration values and the L.A.I. and S.C.I. yet. More measurements have to be done.

1.8

1

ʻ. • :

. .

ţ

Table 3.1 Average evapotranspiration from lysimeters (mm/day)

regoration			Callun	a vulg	aris		,	~
Lysimeter Acrotelm period 15-Apr-91 19-Apr-91 26-Apr-91 03-May-91 10-May-91 17-May-91 23-may-91	1 EVA 2.3 2.4 2.5 2.6 3.6 3.3	WL 7.9 11.1 3.8 3.2 8.2 12.3 13.2	2 EVA 2.7 2.1 1.5 2.4 2.2 2.6	WL 5.7 7.9 4.5 4 5.1 7.8 9.3	15 + EVA 2.3 1.8 2.5 1.7 1.7	WL 3 4.6 -0.2 1.7 2.7 5.2	16 + EVA 3.5 2.0 2.5 2.3 2.2 2.5	WL 6.2 9 4.3 4.5 7.6 9.3

regulation	-		Narthe	cium o	ssifra	gum ,		
Lysimeter Acrotelm period 15-Apr-91 19-Apr-91 26-Apr-91 03-May-91 10-May-91 17-May-91 23-may-91	3 EVA 2.7 1.8 2.2 2.0 1.8 2.2	WL 7.1 10.5 3.3 5.5 7 8.7 10	5 EVA 2.3 1.9 2.7 1.5 1.3 1.4	WL 4.8 9 1.5 5.7 8.5 7.6 7.1	13 + EVA 2.3 1.6 2.4 1.8 1.9 2.2	WL 4.6 6.7 2 3.6 5.3 6.1 6.3	14 + EVA 3.1 2.0 3.1 2.2 2.1 1.8	WL 5.2 7.7 3.9 3.7 6.5 6.5

			Erioph	orum a	ugusti	folium		
Lysimeter Acroteim period 15-Apr-91 26-Apr-91 03-May-91 10-May-91 17-May-91 23-may-91	4 EVA 2.7 2.0 2.7 2.2 1.9 2.1	WL 4.9 9.3 2.1 3.1 7.5 9.1 10.7	6 EVA 2.3 1.6 2.4 1.8 1.6	WL 5.7 8.8 2.1 3.9 6.5 10.1 -10.3	11 + EVA 3.1 2.3 2.3 2.2 2.6	WL 8.1 11.3 6.5 5.7 8.5 9.6 9.8	12 + EVA 3.9 2.2 2.7 2.5 2.5 2.3	WL 7.5 10.4 6.6 6.2 9.2 10.7 11.2
Vegetation			Sphage.					

Sphagnum spec. Lysimeter

Acroteim			8		9 +		10		
period 15-Apr-91 26-Apr-91 03-May-91 10-May-91 17-May-91 23-may-91	EVA 3.5 2.1 2.4 2.5 2.7 3.0	WL 6.7 10.5 5.6 4.7 8 10.7 12	EVA 3.9 2.6 2.8 3.1 3.2 3.6	WL 9.1 13.5 9.7 8.8 10 12 14.8	+ EVA 3.1 1.8 4.1 2.2 2.4 3.0	WL 6.6 9.7 3.5 5.9 6.3 7.9	+ EVA 2.9 2.0 2.8 2.3 2.4	WL. 9 2. 6.3 4.7 6.7 7.7	
					5.0	8.1	3.1	8.2	

EVA is evapotranspiration

Veretatio

Vegetation

WL is waterlevel measured to average surfacelevel

Table 3.2	Leaf area and Sphagnum cover indexes	(L.A.I	and	
	S.C.I.) of vegetation in lysimeters.			

Vegetation	date		Calluna v	ulgaris	· · ·	•
Lysimeter		1	2	15	16	•
Acrotelm				· · · · + · · ·		
L.A.I. (dead)	16-4-91	3.18	. 3.72	0.33	0.52	
L.A.I. (alive)	16-4-91	2.30	2.02	2:40	3.16	
S.C.I.	16-4-91	0.15	··· (0.75	0.35	0.30	
				1111 A.		
~ ~		1	•			•
Vegetation		, · ·	Nartheciu	um ossifragu	m î	
Lysimeter -		. 3	5	13	• • •	
Acrotelm		· · · · ·	. 	13	. 14	
L.A.I. (dead)	- 16-4-91	1.50	1.50	1.50	1.80	
L.A.I. (alive)	16-4-91	0.05		0.00	1.60 0.00,	<u> </u>
	05-6-91	1.22	1.57	0.76	1.02	e e
S.C.I.	16-4-91	6.0.02	0.40	0.15		2 -
	05-6-91	0.01	0.00	0.15	0.30	
		0.01	0.00	0.01	0.25	
	0.1					· · ·
Vegetation	N		Eriophory	m augustifo	lium	
Trend marked			.+	• .		
Lysimeter Acrotelm	1.11	4	- 6	`` 11	12	e
		-	· -	, +	· +	
L.A.I. (dead)		1.05		2.84	0.82	
L.A.I. (alive)		0.24		1.13	0.26	÷.,
	11-6-91	0.73		1.48	0.96	
S.C.I	16-4-91	0.20		0.10 🖤	0.60	
	11-6-91	0.15	0.50	0.25	0.80'	1.00
and the second	1		• •			
Veretation						*

Vegetation,

			• • •			obundation of		
•	Lysimeter Acrotelm				. 7	8	9	10
·	L.A.I. (d S.C.I.	ead)	16-4-91 16-4-91		0.10	0.05	0.05	0.0
j,	÷	4	11-6-91	۰.	0.99	1.00	1.00	0.90

CHAPTER 4

STORAGE COEFFICIENT

4.1 INTRODUCTION

The storage coefficient is the ratio of change in specific storage and the associated change of the hydraulic head or phreatic level. The specific storage is the storage above a certain reference level per unit of a horizontal surface. The storage is the volume of water in a certain part of the ground (C.H.O., 1986).

The storage coefficient is an important factor for the waterbalance. In combination with phreatic levels the change in storage of the bog in a certain period can be calculated. The storage coefficient is also important for the calculation of the transmissivity (see chapter 5).

4.2 METHODS AND MATERIALS

The storage coefficient can be measured with the lysimeters. There are two different ways. At first it can be calculated from changes in waterlevels with corresponding changes in weights. Secondly it can be calculated when water is added or removed from the lysimeters. This gives the following formulas:

$\mu = [(W_1 - W_2) / A] / (h_1 - h_2)$	(5)
$\mu = [(V_1 - V_2) / A] / (h_1 - h_2)$	(6)

 r

щ		= storage coefficient	(-)
W,,	W.,	= volume of water determined by the	
1.	4	weight at time 1, time 2	(1)
V1,	V2	= volume at time 1, time 2	(1)
A	2	= surface area lysimeter	(m^2)
h	h	= phreatic level at time 1. time 2	(mm)

Only data with a difference in phreatic level of at least 3.0 cm are used. The amount of available and usable data is small, and only includes (part of) the upper layer of 0 to 10 cm. So it is not possible yet to distinguish layers with different storage coefficients and to include the deeper layers. However, the calculations can give a good first impression.

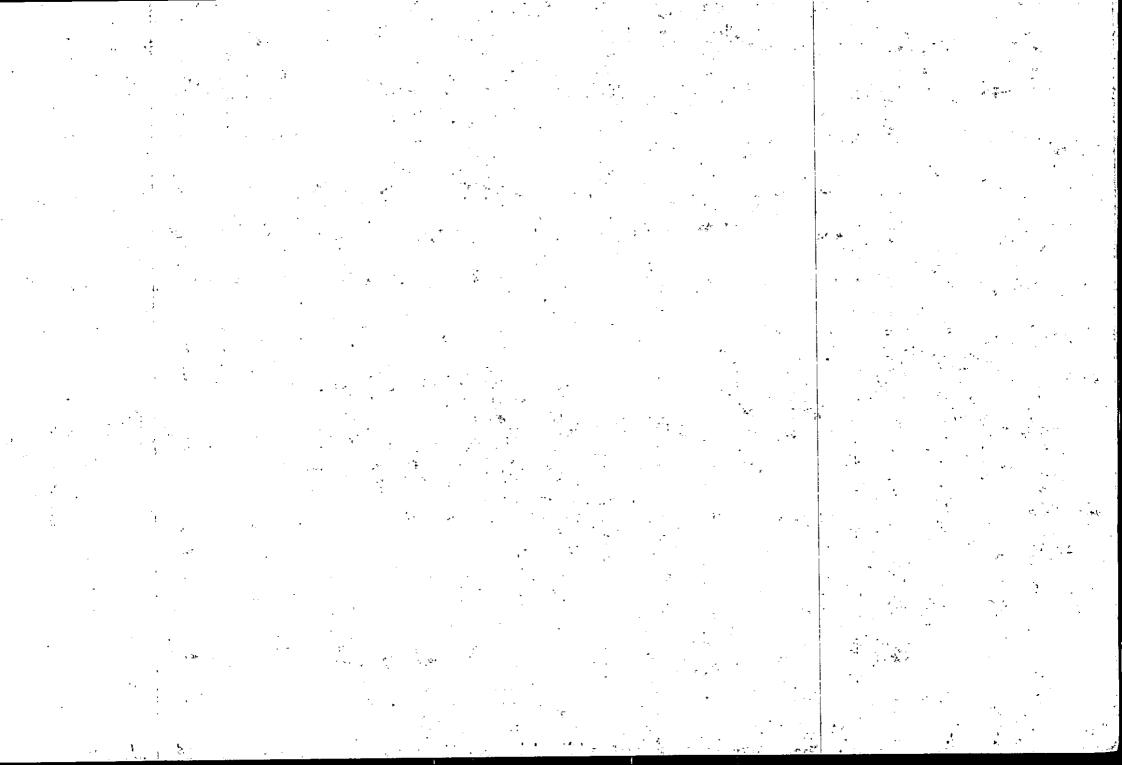
Like the evapotranspiration, the storage coefficient is also investigated for different kinds of vegetation with well or poorly developed acrotelms. The set up has already been described in chapter 3.

RESULTS AND CONCLUSIONS

The data used for the calculations are in appendix 2. The calculation spreadsheet of the weighing data is in appendix 3, the calculation spreadsheet of adding data in appendix 4. The results of the calculations are given in table 4.1.

Table 4.1 Storage coefficients of upperlayers in lysimeters

		•	· ·	· · · ·	
Vegetation	Ca	Calluna vulgaris			
Lysimeter	1	2	, 15 •	16	
Acrotelm	, -	-			
layer (cm -surface)	3-11	3-7	0-5	5-10	
storage coef. (weight)	0.27	0.57-	0.50	0.42	
storage coef. (adding)	0.20	0.50	0.41	0.30	
Vegetation +	- Na	artherium	ossifragu	1	
-			USSILLAG	414	
Lysimeter	3	5	13	14	
Acrotelm	-	· · · · ·	13	+	
layer (cm -surface)	4-10	1-9	3-7	5-10.	
storage coef. (weight)	0.25	0.20	0.44	0.49	
storage coef. (adding)	0.20	0.16	0.38	0.32	
· · · · · · · · · · · · · · · · · · ·		0.10		0.52	
Vegetation	Eriophorum augustifolium				
Lysimeter	4	, 6	11	12	
Acrotelm		s : I	+	+	
layer (cm -surface)	· 3-12.	3-10	8-13	8-13	
storage coef. "(weight)	0.24	0.31	0.42	0.46	
storage coef. (adding)	0.19	0.26	0.32	0.33	
Υ.		•			
Vegetation	- SI	phagnum ŝ	pec.		
Lysimeter	7	A	,	10	
Acrotelm		-		10	
layer (cm -surface)	5-11	8-15	- 2-9	2-9	
storage coef. (weight)	0.41	0.42	0.31	4-7	
storage coef. (adding)	0.31	0.25	0.27	0.21	
				0.21	
· · · ·	•			.' 🛥	


It is remarkable that the storage coefficient calculated by difference in weight at every lysimeter is higher than with adding water. The explanation is that if the water is added there is an amount of air enclosed in the small pores. Then there is a higher watertable measured as it would be in equilibrium situation. The enclosure is possible because of the abrupt addition. When water is removed there is still an amount of water enclosed in the small pores. Then a lower watertable is measured as in equilibrium situation.

This means that the storage coefficients calculated with weighing data are the most suitable in the waterbalance study. With the transmissivity tests in the acrotelm research water is removed abruptly from the acrotelm as well. Therefore the coefficients calculated with the water adding data are the most suitable for the transmissivity research.

The storage coefficient used for the calculation of the transmissivity is assumed to be 0.5. This seems to be rather high. An improvement has not been made yet because the results are based on only a few measurements and the influence on the value of the transmissivity is not very big.

بر بالم

The values of Calluna vulgaris are very variable. In the lysimeters with Nartecium ossifragum and Eriophorum vaginatum there is a distinctive difference between the values of well and poor developed acrotelms. In the lysimeters with Sphagnum this is not the case. This is probably because of the structure of the Sphagnum upper layer. They are the same, the storage coefficient is only measured in this upper layer.

CHAPTER 5

THE ACROTELM

5.1 INTRODUCTION

Description of the acrotelm

According to Ingram (1983), raised bogs function in two different zones from a hydrological point of view, i.e. the acrotelm and the catotelm. It can be stated that in a living raised bog the upper part of the peat deposit can be considered as a component of the acrotelm. In a raised bog of this kind this will usually consist of fresh to poorly humified peat for the greater part, but this is not necessarily so (Streefkerk and Casparie, 1989).

5

The acrotelm is defined as the system of living Sphagna, including their water supply. This is in practice the top layer of the living raised bog with a thickness of 0.10 to 0.30 m. The hydrological characteristics of this layer are its relatively high permeability and its periodically fluctuating groundwaterlevel which is mainly regulated by the amount of precipitation and evapotranspiration. Furthermore a change in height of the bog surface occurs during the year, caused by the capacity of the substratum to swell and shrink, depending on the weather conditions (Streefkerk and Casparie, 1989).

In the waterbalance and the modelling of the bogs the water transport in the acrotelm is considered to be of great importance. The transmissivity of the acrotelm can be very high because of horizontal water flow through big pores. This is in contrast with the catotelm where the transmissivity is very low.

Because of three main properties the acrotelm is hydrologically very complex:

- the variability of the structure of the acrotelm,

- the non stationary flow caused by a changing watertable,

- the downward decreasing permeability.

The structure of the acrotelm changes a lot on short and long distance. Because the acrotelm consists of hummocks and hollows there is a big difference in transmissivity at short distance. This is caused by different vegetation types. These have all there own structure which causes a very heterogenic pattern in the hydrological system.

At long distance the difference is also big, on the edge of the bog there is a poorly developed acrotelm with a low transmissivity and in the middle there is a well developed acrotelm with a high transmissivity.

The other aspect that makes the transmissivity very complex is

the change of it during the year in relation to the watertable. Besides this change the hydraulic conductivity (k) in the layer is not homogeneous, this makes the system even more complex. The conductivity in the layer changes also during the year because of shrinking or swelling of the aquifer.

Objectives of the acrotelm research

It is considered that the outflow through the acrotelm can be derived from the surface slope and transmissivity (v.d. Schaaf, 1990). In this research work has been done to obtain a better insight in the transmissivity of the acrotelm.

As mentioned before the acrotelm has different hydrological characteristics. In this research the acrotelm is defined as the surfacepart of the bog, having high permeabilities and low humification degrees, compared to the catotelm. For groundwatermodelling this is a usable definition for the determination of the transmissivity of the acrotelm. The first purpose of this research is to test if there is an acrotelm in this sense on Raheenmore. This will be tested by comparing hydraulic conductivities of completely highly humificated surface aquifers with those of low humificated surface aquifers.

The second purpose is to determine different zones (with respect to humification and permeability) within the acrotelm.

The third purpose is the investigation of the relation between transmissivity and waterlevel (or relative thickness of the aquifer).

The fourth purpose is the investigation of the spatial variability of the thickness of the acrotelm on Raheenmore bog.

5.2 METHODS AND MATERIALS

The work is carried out in 2 parts:

- transmissivity/permeability tests on certain
- transects and with different waterlevels, and
- mapping of the colour and the humification degree of the first meter below the surface of the bog.

The plots where the transmissivity/permeability tests are done are also mapped. This combination will give answers to the questions concerning the relation between acrotelm structure and transmissivity. With the total mapping these results can be extrapolated to the whole bog.

In paragraph 5.2.1 the methods and materials of the transmissivity/ hydraulic conductivity tests are discussed. The mapping research is described in paragraph 5.2.2. The results will be discussed as a unit in paragraph 5.3.

5.2.1 TRANSMISSIVITY/HYDRAULIC CONDUCTIVITY

The transmissivity/hydraulic conductivity on Raheenmore bog is measured along two transects. For these transects the grid is used (appendix 1). This grid was placed by the O.P.W. (Office of Public Works). The grid has intervals of 100 m. On the bog it is marked with pegs. The holes are situated along the pegs of line L and 600. This means there is a North-South and East-West transect.

The holes are square. The size of a hole is approximately 0.2 x 0.2 meter. They are dug with a spade. Plastic tubes are put in to measure the watertables (figure 5.1)

At every peg one hole is dug. One should be aware of the fact that the variation in transmissivity at small distances is very large and not measured. Because of lack of time it was not possible to measure this. The holes are all situated in the lower parts of the bog (the hollows). That is the most important part where flow takes place.

言語の湯

山気 そうう きょうき こ

When water is flowing through the acrotelm the transmissivity can be measured. When the thickness of the acrotelm is known, the permeability can be calculated. When the waterlevel is below the acrotelm, or when there is no acrotelm, there is only catotelm flow or surface flow. In the catotelm the permeability is measured. The surface flow is not measured.

The differences in transmissivities/permeabilities are so big that for measuring all of them 3 methods were needed:

-Guinness method, for high acrotelm transmissivities/ permeabilities,

-Pit Bailing method, for lower acrotelm transmissivities/ permeabilities and for high catotelm permeabilities, -Augerhole method, for low catotelm permeabilities.

These three methods are all based on Darcy's law. The principles of all three methods are the same. By measuring the velocity of water flow into a borehole with a certain waterlevel the permeability or transmissivity from the surrounding media is derived. The methods differ in marginal conditions and in approach of the measurements. They are described in the following part.

The Guinness method

For the measurements of high transmissivities in the acrotelm no method was available. Therefore S. Van Der Schaaf developed a new method. It is based on a radial flow towards a well. The well

consists of an approximately square hole, dug with a spade, that fully penetrates the acrotelm. The waterlevel in the hole recovers very quickly. The sizes of the hole are measured to calculate the effective radius.

The effective radius is calculated with the formula (Van Der Schaaf, 1990):

(m)

(m)

 $r_{eff} = 0.6 a$

r_{eff} = effective radius = length of a side of the square а borehole

By taking out a constant discharge and measuring the drawdown the transmissivity can be derived (figure 5.1). In the beginning water was taken out with a 1 pint beer glass (hence the name of this method). By taking out a constant volume at constant intervals an approximately constant waterlevel was achieved. Later, a plungepump was used. The constant waterlevel installs in a very short time (1 to 2 minutes).

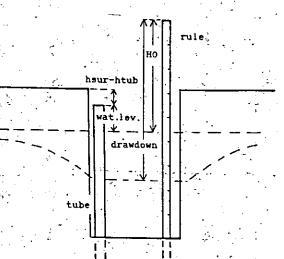


Figure 5.1 The set up of the acrotelm holes for the transmissivity/permeability tests.

Two different discharges were used. This is achieved with different lengths and diameters of the tubes through which the water is pumped away. The discharges were tested and measured. It is assumed that the discharge during the measurements are the same as the corresponding tested ones.

. at .

The transmissivity can be calculated with the formula:

 $T = Q \times \ln(n) / (2\pi \times s_w)$

T = transmissivity

Q = discharge

n = ratio between the radius of the well

and the radius of the drawdowncone

s_w = drawdown in well

The ratio between the radius of the well and radius of the drawdowncone can be calculated with the formula (Van Der Schaaf, 1990):

(8)

(9)

 (m^2/s)

 (m^3/s)

(-)

(m)

(S)

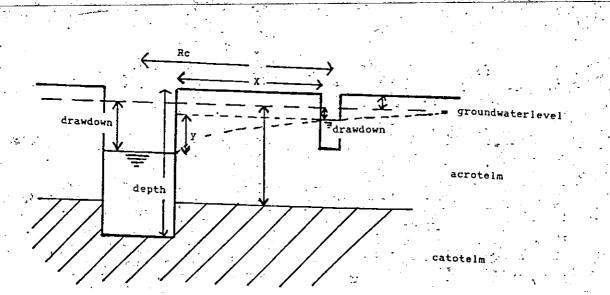
(-)

 $t = \{1 + \{\mu [n^2 - 2 \times \ln(n) - 1]\} / (2\ln(n)) \times \pi \times r_w^2 \times s_w / Q\}$

t = time needed to reach equilibrium $\mu = storagecoefficient$

The value of n cannot be calculated directly from the equation. It can however be read from the table in appendix 5. In the table the values of n are given for the term $[n^2 - 2ln(n) - 1] / ln$ (n). This term is equal to $(t \times Q / \pi \times r_w^2 \times s_w - 1) \times 2/\mu$. A high accuracy of n is not needed because the transmissivity depends on the logarithm of n.

For this method the following conditions have to be satisfied: - the aquifer has to be penetrated totally,


- the extent of the acrotelm is much larger then the distance to which the phreatic level is noticeably effected by the drawdown in the well,
- the aquifer is homogeneous,
- the phreatic waterlevel is approximately horizontal before the test,
- the discharge rate has to be constant,
- the flow is horizontal,
- the thickness of the acrotelm is constant, and
- the drawdown must not exceed over 10% (preferably 5%) of the thickness of the acrotelm. It is therefore not allowed to be more than 3 cm.

Calibration of the Guinness method

The method has been calibrated. Therefore at some distance of the big hole, a small hole was added (see fig 5.2). The calibration has been done in two different ways. The first method was with plates (plate method). With the plates three sides of the big

hole were blocked and the flow path from the small hole to the big one was screened. With this, while pumping, a horizontal flow was created. The hydraulic conductivity can simply be determined with Darcy's law and the continuity equation.

The second method is without plates. The only difference from the ordinary test is that a small hole, made with a finger, is added (finger method). For the calculation of the transmissivity formula 8 is used, with the value of n derived from the calibration (ratio between the radius of the well and the distance of the hole to the middle of the well). This method is derived from a pump test.

Figure 5.2 Calibration of the Guinness method

The Pit Bailing method

In case the drawdown exceeds over 2.5 cm, the Guinness method is not suitable anymore (drawdown exceeds 10% of the thickness of the acrotelm). Then, there is a switch to the Pit Bailing method.

This method was developed by Healy and Laak (1973) as a basis for the design of drain fields for septic tanks. The method has been refined by Bouwer and Rice (1983). The article of the latter two has been used.

With this method the same hole as with the Guinness method is used. When, after digging, the waterlevel in the hole has come to equilibrium, the waterlevel is lowered rapidly over a small distance (about 3 cm). The subsequent rate of rise of the water level is measured for calculation of k. The method of calculating the hydraulic conductivity depends on wether the waterlevel is in or below the acrotelm. When it is in the acrotelm the Thiem equation is used. When it is below the acrotelm, the piezometer method equation is used.

The Thiem equation describes horizontal, steady state flow to a completely penetrating well. Laak and Healy assumed that the radius of influence of the pit was 4 times its own radius. The conductivity is calculated with the formula (see also figure 5.3, with the difference that the hole penetrates the whole aquifer):

$k = A \times (dh/dt) \times \{1 / [2.27 (H^2 - h^2)]\}$ (10)

k = hydraulic conductivity (m/s)
A = water surface area (m²)
dh/dt = velocity water rise (m/s)
H = equilibrium height of watertable above the
 impermeable layer (m)
h = height of rising water table above the
 impermeable layer (m)

The main requirement for this equation is that the hole penetrates the aquifer completely. It is assumed that the catotelm has a very low hydraulic conductivity in comparison with the acrotelm, the catotelm is considered to be impermeable. In paragraph 5.3 the correctness of the assumption will be discussed.

The transmissivity is calculated by multiplying the thickness of the acrotelm by the calculated conductivity. The measured value is an average of the whole layer.

When the waterlevel is below the bottom of the acrotelm, there is only catotelm flow. Then, the Thiem equation cannot be used. It does not account for the upward flow through the bottom of the pit. In this case the piezometer method equation can be used (Bouwer and Rice, 1983). It can be used because the geometry of the flow system in the aquifer after the waterlevel in the pit has been lowered to measure its rate of rise is similar to that of the piezometer method. The formula is (for explanation see also figure 5.4):

 $k = {\pi x r / [(A_p/r) x t]} x \ln (y_0/y_t)$

k = hydraulic conductivity	(m/s)		
r = average radius of the hole			
y_0 = distance y of the waterlevel below the			
equilibrium level after the waterlevel is			
lowered, at time 0	(m)		
$y_t = distance y at time t$	(m)		
$t = time$ for the waterlevel to rise from y_0 to y_t	(s)		
A = geometry factor	(m)		

(11)

The geometry factor A_p can be obtained from the graph in appendix 7. Therefore the following factors need to be known (see also figure 5.3):

- the equilibrium waterdepth in the pit Lc,
- the average radius r, and
- the depth D of the impermeable layer below the bottom of the pit.

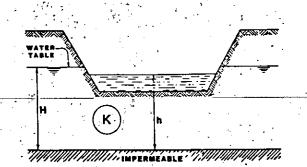


Figure 5.3 Geometry and symbols for the Pit Bailing method

The Augerhole method

The augerhole method is only used on the border from the bog. Here the inflow of water was so low that the rate of rise with the Pit Bailing method could not be measured. There was no acrotelm or the waterlevel was below the acrotelm and did not take part in the watersupply. This means that the conductivity from the catotelm is measured.

This method is very well described by Van Beers (1976) and in various other literature. Therefore this method will not be discussed in much detail.

In a borehole the groundwaterlevel is abruptly lowered to a certain point. By measuring the recovering velocity of the waterlevel the hydraulic conductivity of the surrounding ground can be calculated. The following formula is used to calculate the hydraulic conductivity (for explanation of the terms see also figure 5.4):

 $k = -C \cdot x \cdot h/At$

(12)

k = hydraulic conductivity C = geometry factor ^h/^t = water rise velocity

(m/d)(-)(Cm/s)

The geometry factor is a function of: -the average hydraulic head, -depth and radius of the borehole, and -the distance of the bottom of the borehole to the sealing

layer.

The value of C is calculated with a nomogram (appendix 8). The measuring of the rise of the watertable must be done before 25% of the bailed water has returned.

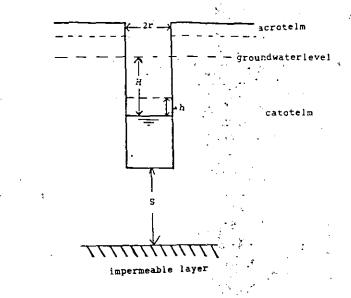
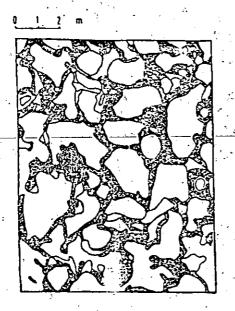


figure 5.4 The augerhole method.

5.2.2 ACROTELM MAPPING


At first instance a drilling to a depth of 1 meter below surface is carried out, using a special peat-auger. With this instrument relatively undisturbed peat samples can be taken. The drill has a sampling body consisting of half a cylinder with a length of 50 cm and a diameter of 4.5 cm. The drill turned out not to be suitable to sample poorly or unhumified peat near the surface of the bog. The drill compresses this peat and the peat is too fibrous to stay in the sampling body. The method was modified by using a spade for the upperpart. Ζ,

ころうちょうないで

The samples are investigated on humification degree and colour. The humification degree is determined with the "Von Post and Granlund scale" (appendix 11). The colours are determined with "Munsell's standard soil colour charts".

The drillings and diggings were carried out near all the pegs of the gridsystem (see appendix 1). This means that the plots have intervals of 100 meter. At first instance near each peg a plot was chosen randomly. With the results of these tests hardly any pattern could be drawn. This will be described in paragraph 5.3. The explanation was found in literature and by own experience.

The surface of a raised bog is characterised by a hummock and hollow complex. Hummocks and hollows respectively lie slightly higher and lower than the average bog surface. Sphagna occur more often in the hollows than on the hummocks. (Streefkerk and Casparie, 1989). The hollows consist of unhumified to poorly humified Sphagna, the hummocks are higher humificated. The hollows form a net-shaped discharge system. They are decisive for the acrotelm transmissivity. In figures 5.5 and 5.6 this is illustrated.

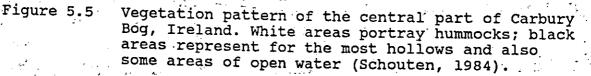


Figure 5.6 Water discharge from hummocks and via hollows of a raised bog (Streefkerk and Casparie, 1989).

With this new information a second mapping was done. It is assumed that this system also exists in the central parts of Raheenmore bog. Aerial photographs and vegetation mapping that will be done by Lara Kelly may give a definite answer. The method is modified as follows: if a digging/drilling isn't done in a Sphagnum vegetation, a digging at a plot with this vegetation in a hollow is added.

In order to correlate the mapping results with the transmissivity measurements the transmissivity holes are investigated. As it is not allowed to disturb the holes the drillings for the mapping of the deeper layers are done near the holes (at a distance of about 1 meter).

5.3 RESULTS AND CONCLUSIONS

The data of the first mapping are summarized in appendix 12. The data of the supplementary mapping are in appendix 13.

Acrotelm variation on short distance

At first some results of the first mapping research, where plots were randomly chosen, are compared to those where plots were chosen in hollows with Sphagnum (table 5.1).

Table 5.1 Differences in humification degree of corresponding layers of diggings near one peg, the mutual distances are approximately 1 meter.

coordi- nate	layer	vegetation	humification	humification Sphagnum hollow
-	(cm)		(Von Post)	(Von Post)
J 300	0-10	Narthecium	5	3
K 000	0-10	Calluna	5	4
K 100	0-10	Narthecium	5/6	3
K 200	5-25	Calluna	6 .	3
K 300	0-20	Narthecium	6	3/4
K 400	0-15	Calluna	. 6	3
K 500	5-15	Sphagnum	6	4
K 900	0-30	Sphagnum	5/6	3
L 400	0-20	Sphagnum	5/6	4
L 500	5-20	Sphagnum	7	4

Only the most extreme diggings are selected. The results show that the humification of upperlayers can vary very much on a small distance. The humification in hollows with Sphagnum can be 1 to 3 degrees lower than at other locations, even on locations were Sphagnum grows as well. An explanation for this is the existence of many different kinds of Sphagna, connected with their own particular environments.

Relation between permeability and humification: determination of the acrotelm

In table 5.2 the results of the mapping and transmissivity/ hydraulic conductivity tests are summarised. The hydraulic conductivities are plotted against the humification in figure 5.7.

table 5.2 Permeabilities, transmissivities and humifications of the surface_layer(s)_on_the_transects-on-Raheenmore-bog

4

			•		•	·		
-	date	. coordi- nate	humifi- cation	method	conduct.		transmis.	
-		·. ·	(Von Pos	it1	(m/day)	perm.lay.	(m2/day)	
• • • •		•	• • • • • •		(my day)	()	(#2/day)	e.
:	16-4-91		7	· A	0.16	,	· <u>.</u> · .	
	n, *	L-100	4	Р	104	0.06	6.2	
		L 000	5	Р	52	0.07	3.6	
·	- '	⁻ L 100	4	· P.	60	0.07	4.2	
•		L 200	2	G	. 79	0.38	30	
		L 300	Э	G	237	0.38	90	•
		L 400	5	P	106	0.13	14	÷ .
		L 500	4	G	380	0.15	57 1	
	· · ·	- L 600.	3	G	388	0.15	58	-
,		L 700	3	Р	123	0.03	6.2	ī.,
		L 800	3.5	G	204	-0.45	92	`'
		"," L= 900	- 3	* G		0.38	1187	
		L1000	4	G	383	0.12	46	
,		L1100	3 .	G	896	0.13	116	·
		L1200	3	G	412	0.15	62	•
	• •	L1300 .	-	. G	533	0.12	64	-
		L1400	7	· A	0.35			`
Ť	•	I '600'	6.6	A	0.11	-		
	-	J 600	4	P	115	0.04	. 4.6	
		K 600	4	G	329	0.08	26	
		M 600	3.9	G	785	0.13	102	
· .		N 600	3	G	222	0.15	33	•
		0 600	4	G.	206	0.23	47	
		P 600	`.` 3	G	101	0.32	32	-
· ·		Q 600	1. j. 4	G	788	0.08	63	
. * •		R 600	6.8	A	0.32			
· · · ·			1	•	- • •	÷		
· · ·	05-6-91			•	• • • •	•	• •	4
4	0040-01	L-100	6	P	3.4	-	· -	
-		L 000	7	Р	1.2			
•	•	L 100	.6 .	P	- 4.8		. – ¹ –	÷.
N		L 200	. 2	· P	24	0.28	. 6.B	
•		L 300	3	G	245	0.31	77	
		L 400	6	A	1.2	÷ .	14 - E	
		L 500	4	P.,	57	0.09	5.1	1.11
		L 600	3	· P · ·	56	0.09	5.1	
		L 700	7	P,	1.4	- · .	· · · · · ·	
۰.	·	L 800	.j 4	P	27	0.25	6.8	
		`L '900	3	Р	51	0.23	12	11
	•	L1100	5	P	4 5			-
		X 600	7 -	P	7		<u> </u>	
		" M 600 -	•	G	1108	0.04	49.9	
		N 600	з	- P	- 63	0.06	3.8	
	•	0 600	. 4	G	280	0.12	34	
		P 600	. з	G	199	0.20	40	
		Q 600	6	A	0.34	-	·	<i>.</i>
· · · ·					1 e +			

At 05-6-91 holes L-200, L1000, L1200, L1300, L1400, I600 and J600 were dry or too muddy to measure.

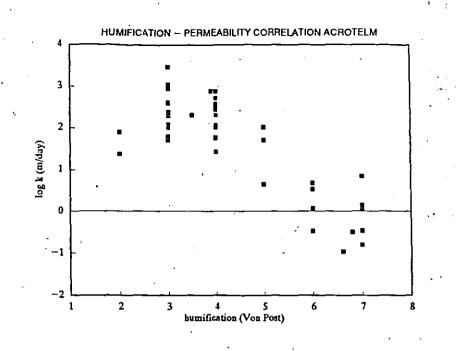


fig 5.7 Humification and permeability correlation graph

With the calculations it was assumed that the catotelm, being highly humificated, was impermeable compared with the acrotelm. The results show that this assumption was right.

The graph shows that there is a correlation between the humification degree and the hydraulic conductivity. There are two ranges of points, one from H2 to H4 and one of H6 and H7, having a different order of magnitude in hydraulic conductivity. From this it can be derived that, compared to layers having humification degrees from 2 to 4, layers with humification degrees 6 and 7 can be considered impermeable. Secondly, the mutual differences in hydraulic conductivities in the two groups are small. Therefore it is allowed to take a mean humification degree, when both layers are in the same group.

It is not clear in what way the layers with a humification degree 5 should be interpreted. At first only 3 measurements in these layers have been done. Secondly these measurements were done with high waterlevels (2 and 3 cm below surface). When there is a decreasing hydraulic conductivity with depth, these tests will overestimate the mean hydraulic conductivity of a surface layer with humification degree 5.

In total the results prove the existence of an acrotelm and a catotelm, with respect to hydraulic conductivity and humification. The acrotelm is the unhumified to poorly humified upperlayer (H1 to H4) with hydraulic conductivities from 25 to over 1000 m/day. The upperpart of the catotelm is highly humified (H6 and H7) with hydraulic conductivities varying between 0.1 and 7 m/day.

The variation is rather large. The variation can be associated with the large variations of the acrotelm quality in short distance, depending on the hummock-hollow complex. For instance, there are relatively low transmissivity values in a hole with a well developed acrotelm in a small hollow. Then, the flow to the hole is relatively small compared to a well developed acrotelm.

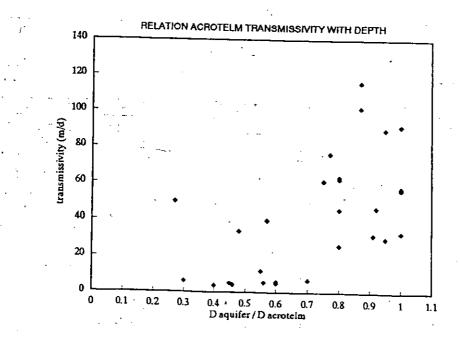
Checking of the permeability/transmissivity tests

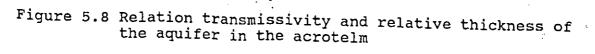
The transmissivities measured with the Guinness method vary between 25 and 115 m²/day. With the Pit Bailing method the values with the Thiem equation are between 8 and 15 m²/day. Though there is a gap between these intervals, there is no reason to assume that the methods do not connect properly. The connection can be investigated by calculating the borderline cases with two methods.

The conductivities measured with the Augerhole method vary between 0.1 and 1 m/day. The conductivities measured with the Pit Bailing method in the catotelm vary between 1 and 7 m/day. This means that there is a good connection between these methods.

Calibration of the Guinness method

The calculations and results are summarized in appendix 6. The values derived with the Guinness method are given as well. The plate method gives much higher transmissivity values as the values calculated with the formula. A possible explanation for this is leakage between the plates. The finger method values are much more in agreement. Two of the three values agree sufficiently.


The calibration of the method is based on too few measurements. More measurements with the finger method have to be done by the other students.


Decreasing permeability with depth

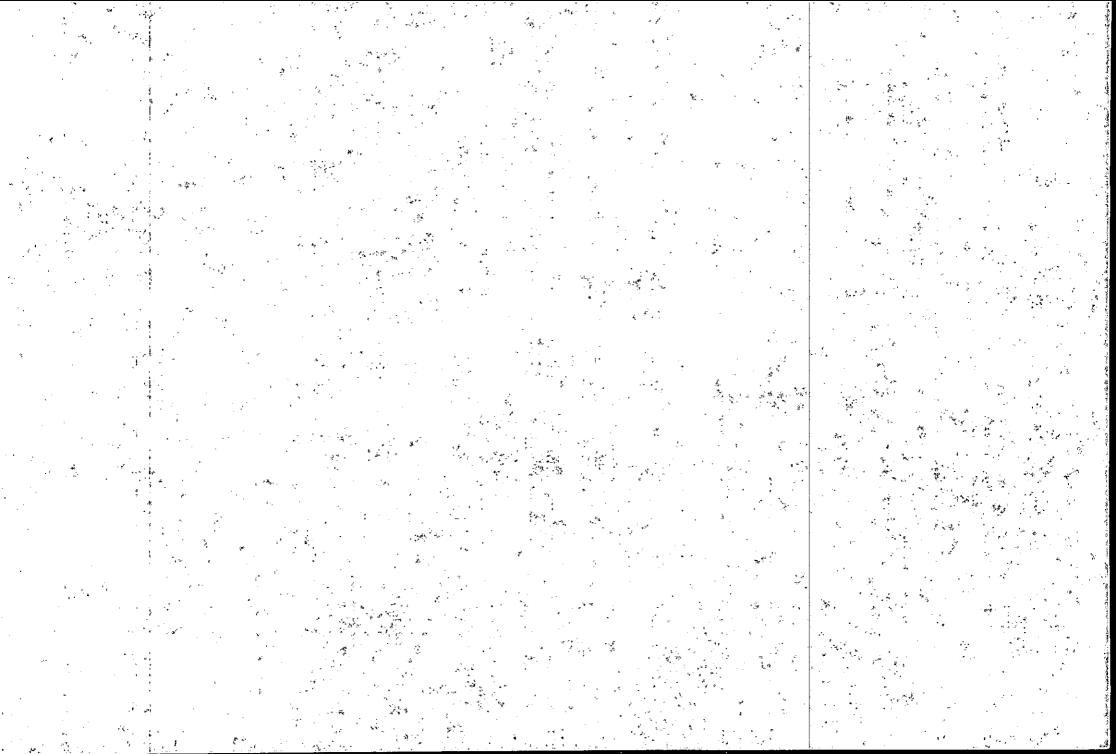
Further on there is the question of the non-linear relation of transmissivity with the change of waterlevel, because of increasing hydraulic conductivity in the acrotelm with depth and because of shrinkage. Therefore the transmissivities are plotted against the relative thickness of the acrotelm saturated with water: D aquifer / D acrotelm (fig 5.8). The used data (locations, dates, waterlevels, acrotelm thickness) are given in table 5.3

				16-4-1	1991		05-6	-1991	•	
	coord <u>i</u> nate	- humifi- cation	thickn. acrot.	wat th lev. we	haiig	trans- miss.	wat th			• .
		(V Post)	(cm)	-surr 1	ayer	(m/d)	-surf (cm)	layer (cm)	miss. (m/d)	
	L-100 L 100	4 4	10 15	4	6	6.2	-	-		
	L 200 L 300	2	40	8 2	7 · 38 ·	4.2 30	-		-	
		3	40	2	38 📫		12 9	29 32	6.8 · 77	•
•	L 500 L 600	4 3	20 15	0	20	57	11	9	5.1	
	L 700 L 800	3 3/4	10	0 7	15 3	58 6.2	6	9	5.1	•
	L 900 L1000	з.	45 40	0 · 2		92 1187	20	25	5.5	
	L1100	4 3	15 15	2 3 2	12	46	18	22	12	
	L1200 L1300	3 4	20 15	5	13 15	116 62	-	-		
	K 600 M 600	4 .	10	3. 2,	12 6	6 4 26	-	· -	-	
	N 600	3	15 15 :	2	13	102	11	4	50	
	O 600 P 600	4	25 35	2	15 23	33 47	9 13	6 12	3.8 34	
	Q 600	4	10	3 2 ·	32 8	'32 63	15	20	40	
							-	-	-	

Table 5.3 Acrotelm transmissivity in ation to waterlevel and thickness of the aquifer.

It is very hard to distinguish a relation in the graph in fig 5.8. Perhaps this will be possible when more measurements in the same holes with different waterlevels are done.

Mapping of the whole bog


The cross sections show that the acrotelm is well developed in the central part of the bog (in the hollow network). The pattern is very heterogeneous. This can be caused by a large variation in the depths of the hollows. In the direction of the bog edge the acrotelm quality decreases. Near the edges the acrotelm is (almost) absent.

Again, the acrotelm is continuously present in the hollow network at the central parts of the bog. At flat parts of the bog the acrotelm is thick. On the slopes the acrotelm is thin or absent. This is not only the case at the edges, but also in the central part of the bog. It seems as if the acrotelm is built up like a staircase. Sometimes the stairs are separated by more humified parts. The stairs seem to form basins. With a low water level these basins are isolated and the discharge decreases strongly.

At places where the acrotelm is thin the abundance of the hollows usually decreases. At some stage they will not form a network anymore. This can be the case on the edges of the basins. Then the higher humified upperparts of the bog will be the decisive medium for the waterflow. There will be a high resistance for the waterflow. The groudwaterflow will change here in overland flow in times of big discharge.

It is recommended to investigate the basin working nearer, by an investigation of the absence or presence of the hollow network on the edges of the basins. This can be done by comparing the acrotelm mapping with the vegetation mapping and with supplementary fieldwork. If the network is absent supplementary augerings have to be done at plots where until now only augerings are carried out in Sphagnum.

The presence or absence of basins can also be derived in another way. In future the transmissivities will be measured at low waterlevels. By comparing the calculated discharge with the measured discharge in the v-notch, it can be derived if there is a basin working. There is a second permeable layer between 0.5 and 1.0 meter below the surface. If the layer is continuous it might transmit a considerable amount of water. The humification degree is 4 and 5. The transmissivity cannot be derived from the previous tests, as the layer is probably more compact than a acrotelm layer with the same degree of humification. The transmissivity can be measured with tests in deep holes, at places without waterflow through the acrotelm. This is possible on the edges of the bog and/or during dry periods when the watertable is low.

CHAPTER 6

PIEZOMETERTEST

6.1 INTRODUCTION

In order to calculate the flow of water in the peat the hydraulic conductivity must be known. The basic relationship describing soil water flow is Darcy's law:

(13)

 $v = -k \cdot i$

v = flow velocity(m/d)k = hydraulic conductivity(m/d)i = dh/dx = hydraulic gradient(-)

In this project two methods have been used to measure the hydraulic conductivity:

- the rising head piezometer method (Van Gerwen, 1990, Huisman, 1991 and Flynn, 1990), and
- the constant head piezometer method (Flynn, 1990 and Henderson, 1991).

The results of the previous rising head tests give lower values as reported in literature (Van Der Schaaf, 1990). It is not unlikely that the tests give too low values. A piezometer test is set up to sort out this problem.

The test deals with the following subjects:

- filter geometry: perforation rate and filter length,
- sealing of the tube, and
- falling, rising and constant head method.

The piezometers used in the project are all made by hand. Because of this there is no standard perforation rate and filter length, every tube is slightly different. According to the descriptions of the used methods the perforation has no influence on the derived conductivity as long as the inflow of water is not limited. The filter length has influence on the derived conductivity as it is calculated in the geometry factor.

The influence of the shape of the sealing of the piezometers is also tested. According to J. Mulqueen (Teagasc/UCG) the sealing of the tubes as used in the project has an influence on the permeability measurements. All piezometers in the project are sealed with rubber furrels. They have a slightly larger diameter then the tubes. Therefore they make a bigger hole around the piezometer (see fig 6.2).

Besides rising head, falling and constant head methods are examined. According to Flynn (1990) falling and rising head

methods are not suitable as the peat is disturbed excessively. The constant head test is an approximative method of acquiring undisturbed hydraulic conductivities.

6.2 METHODS AND MATERIALS

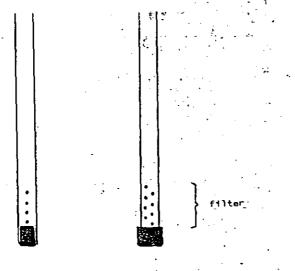
The coordinates of the locations of the tests are: K 900 for test 1 and K 1250 for test 2. (See appendix 1). The testscheme with the numbers of the tubes is given in figure 6.1.

	· · ·		· · · ·		-	
furrel		· · · · · · · · · · · · · · · · · · ·	cork		· •	
•			5 <u> </u>			
ler perfo- (c	ter: gth 10 m)	20	perfo-	filter length (cm)	10	20
ration (%)	- - 		ration , (%)			
10	2,6	1,5	10	1	0,14	9,13
20	3,7	4,8	20]	2,16	11,15
#						

test 1: falling, rising and constant head with furrel sealing test 2: falling, rising and constant head with furrel and cork sealing

figure 6.1 Scheme piezometer test

وير فرو


The test has been carried out at two different plots. The piezometers at the first plot were placed by H. Lenses in December 1990, with a mutual distance of 0.5 meter. The total length of the piezometers is 3 meter, 35 cm of that sticks above surface level, so the cavities are at \pm 2.65 meter below surfacelevel. The diameter of the tubes is 2.5 cm.

The first plot existed of two piezometers of each kind of filter geometry. Their numbers are 1 to 8 (see fig 6.1). The test consists piezometers having filters with perforation percentages of 10 and 20%, and filter lengths of 10 and 20 cm. All piezometers were sealed with a furrel.

When the piezometers of the first test were taken out the geotextile of all piezometers appeared to have the same length (25 cm). This might have had an influence on the measurements concerning the shapefactor.

Besides	piezometers	sealed	with	furrel	therë	were	also
				· · · · · · · · · · · · · · · · · · ·			

piezometers sealed with cork at the second plot. The cork fits completely in the tube (see figure 6.2). The geotextile had the same length as the filter. This test was also carried out in duplicate. This makes a total of 16 piezometers. (see fig 6.1). Their mutual distances were 1 meter. The measurements took place 14 days after the piezometers were installed.

tube with cork

tube with furrel

figure 6.2 Tubes sealed with a furrel and with a cork.

<u>Rising and falling head test</u>

The rising head piezometer method was developed by Luthin and Kirkham (1949). It consists of measuring the rate of flow into a piezometer, after removing a certain amount of water from the tube. In Van Gerwen (1990) a more comprehensive description is given. R.M. Flynn used the approach of Hvorslev (1951) for the rising head.

The formulas for the calculation of the conductivity of the rising and falling head are the same. They are supposed to be each others contrary. The principles of both of them are the same. The only difference is that water is added with the falling head and that water is drawn out with the rising head. The calculated conductivity of both methods in one tube should be the same.

The formula used for calculations is developed by Luthin and Kirkham. For explanation of the terms see also fig 6.3.

	$k = \pi \times R^2 \times \ln(Y1/Y2) / (A \times (t2 - t1))$	(14)
•	<pre>k = hydraulic conductivity t1, t2 = time at time 1, 2 Y1, Y2 = hydraulic head at time 1, 2 R = radius of the tube A = geometrical constant</pre>	(m/s) (s) (m) (m) (m)

The geometric constant is dependent on dimensions of the filter part. It can be obtained from the graph in appendix 15.

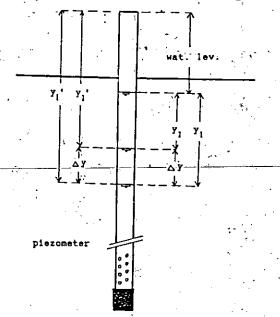


fig 6.3 Symbols of rising and falling head piezometer test

Constant head test

The constant head method was developed by Rycroft (1973) It consists of measuring the inflow of water in a piezometer by using a small imposed constant head. A more comprehensive description is given by Flynn (1990) and Henderson (1991).

The constant head is achieved with a mariotte vessel (see fig 6.4), in which the outflow can be measured. The conductivity can simply be derived with the formula:

k = Q infin / (S x YO)

				•	
•	(1	6	١	

· `,	Q infin = steady flow rate	<u>.</u>	`	(m^3/s)
	k = hydraulic conductivity			(m/s)
	Y0 = constant imposed head			-(m)
	S = shapefactor	.*1	·	~(m)

The shapefactor is calculated with the next formula (Flynn 1990) :

$S = 2 \times \pi \times L / ln \{$	L / d + [l+ (l / d)	$\begin{bmatrix} 2 \\ - \end{bmatrix}^{1/2}$	(17)
L = length of the t d = diameter	ube with cavities	(m) (m)	

The imposed head can be calculated with the following formula (for explanation of the symbols see also fig 6.4):

$$Y0 = (h_0 + a) - (l_{iv} + b)$$
(15)

	•	
YO h _ò	= equilibrium height of watertable	(m)
	(Delow top of piezometer)	. (14)
a	= distance between top of piezometer and	•
	waterievel instrument	(m)
[⊥] tv	= length of tube in vessel	(m) · ·
b	= distance between top of tube in vessel	
	and waterlevel instrument	(m)

4

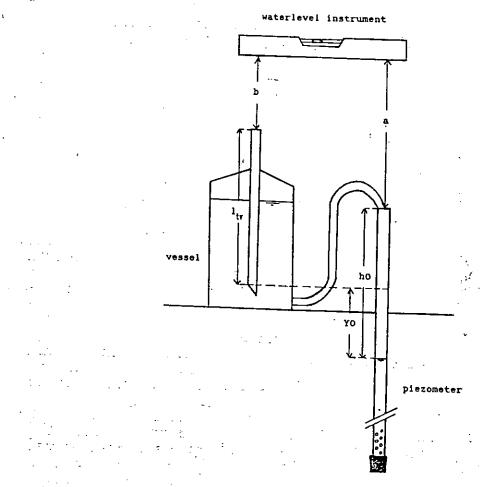


fig 6.4 Symbols of the constant head test

The rising and falling head tests at the first plot were carried out slightly different from the tests at the second plot. With the first rising and falling head tests the waterlevel was measured in one serie of about 2 hours. The drawdown was 0.2 to 0.4 meter. The calculations have been done as described above. After a meeting with S. van der Schaaf it was agreed that the measurements in one tube would be repeated several times after each other. By repeating the tests several times the changes of the waterlevels become steady. Then the situation around the piezometer is stationary. Therefore the last measured velocities are used for calculating the conductivity.

With this method the water level should be measured in the part where the imposed head was bigger than 0.20 meter (Klute, 1986). Therefore the measurements in test 2 are done in a shorter time and with bigger imposed head than in test 1. The calculations of this plot have been done as described in appendix 18.

From the first plot the measurements of the steepest part of the graph were used. This was the part where the imposed head was bigger than 20 cm. In comparison with the measurements of the second plot the velocity that is measured is higher and therefore the conductivity is relatively higher as well. The measurements could not be repeated because the tubes were already moved.

6.3 RESULTS AND CONCLUSIONS

The calculations and the graphs of the measurements of the first plot are in appendix 16, the calculations and graphs of the second plot are in appendix 17. The calculated conductivities are in table 6.1.

When equal piezometers and tests are mutually compared the values differ a lot. They differ from 1 to 20 times. Probably the test field is not homogeneous. This means that the results must be interpretated carefully. Another test, if possible in a more homogeneous area, has to be added.

The values of the different conductivities measured with the same method are not distinctive. Considering the graphs in appendix 16 and 17 there is a little changing difference between the rise or fall of the waterlevel in the piezometers. The conductivity especially depends on the transect that is chosen for calculations and the geometry factor. Most graphs are about the same. They only differ in starting height. At the first plot this might be caused by the geotextile, but at the second plot the same thing occurs with both falling and rising head. With the constant head there are also a lot of piezometers with the same rate of inflow. This means that with these tests no influence of filter length and perforation rate can be determined yet.

When the three methods are compared there is a big difference in magnitude in determined hydraulic conductivities. At the first plot the rising head tests give bigger values than the falling head tests. In the second plot the opposite happens. This difference between test 1 and 2 can be caused by the difference in time between placing of the tubes and measuring. At the second plot the hydraulic conductivities measured with the constant head show no distinctive difference with the rising head method. The hydraulic conductivities measured with the falling head are much higher. May be the high water pressure at the start of the falling head test causes a hole around the piezometer, through which the water flows away easily.

; •	test 1	-			ч. -	· · ·
•	tubenr.	perfo- ration	lenght cavity	conduct	ivity (m/d	lay)
		(%)	(cm)	rising	falling	constant
•	2	10	10	0.23	0.09	0.16
	. 6	10	10	0.56	0.39	2
	1	10	20	0.42	0.12	0.08
	5	10	20	0.87	0.43	0.03
	4	20	10	0.55	0.16	0.12
	8.	- 20	10	0:55	0.45	0.20
	3.	20	20	0.35	0.15	0.07
	. 7	20	20	0.63	0.35	0.07
•		•				્યું
		`				
	test 2	•			. .	•
	tubenr.	perfo- ration	lenght cavity	conducti	vity (m/d	ay)
		(%)	(cm)	rising	falling	constant
	2	10	10	0.80	. x	10.13
	6	10	10	0.88-	. x -	1.70
	1	10	20	0.07	° x	0.13
	5	10	20	0.39	x	0.58
	4	20	10	0.44	x	1.59
	8	20	10	0.13	x	0.09
	3	20	20	0.06	. .	0.21
	7	20	20	0.01	0.44	
	10					
	10	10	10	0.032	0.59	_
	14	10	10	0.117	0.63	0.06
	9	10	20	0.024	0.61	0.18
	13	10	20	0.070	0.81	0.01
	12	20	10	0.130	0.52	0.31
	16	20	10	0.140	0.53	0.18
	11	20	20	0.055	.0.55	0.03
	15	20	20	0.231	0.98	0.04

Table 6.1 Hydraulic conductivities obtained from piezometer tests

x = flow rate too high to be measured - = no value due to failure vessel

With all methods, the values measured in piezometers with furrel are much higher than those with cork. The furrel probably drives a hole around the piezometer, through which the water can flow away (or in) very fast. This means that the present piezometers used in the project, all with furrels, are not suitable to measure permeabilities.

The constant head is difficult because a lot of water is needed, the equipment sometimes doesn't operate and failures in the measurements are hard to see. The falling and rising tests are simple and their equipment is very limited. Because of the high flow rate the falling head test was hard to execute.

2

9

••

.

CHAPTER 7

BOUNDARY SURVEY

7.1 INTRODUCTION

A catchment boundary is the border of a catchment area, an area where all water discharge is going through one watercourse. The catchment boundary of groundwater is not necessary the same as the boundary of the surfacewater.

At Raheenmore the discharge that takes place in the drains is supposed to be measured. Therefore a special drain has been dug which connects a lot of drains. The discharge is measured by a V-notch and a waterlevel recorder. They are installed at the end. of the drain.

For catchment calculations it is necessary to have an estimation of the size of the catchmentarea. For this purpose a boundary survey was set up. Four sets of 3 phreatic tubes are placed on Raheenmore (locations see appendix 19). This was based on the topography of the bog. By measuring the waterlevel in the tubes every 2 weeks the catchment boundary was hoped to be estimated.

After a field inspection of the waterflow in the drains it appeared that the catchment boundary is not properly assessed. Two sets of piezometers have a drain in between them. The waterlevels of those piezometers will be influenced by the drains. Even though the drains are fullgrown with vegetation there is still a flow in the drains. This will have an influence on the waterlevel in the ground next to the drain and the water in the drains was flowing to another side as the boundary indicated. As a result of the influence of the drains not the catchment boundary is measured, but the waterlevels of different areas.

It also appeared that the main drain (drain nr 1 appendix 18) on the North-side in the area is not included in the catchment, there is a lot of water flowing through that drain and it is not exactly known where it flows to. Partly it will go as overlandflow into the drain that leads to the V-notch but there is also a part that runs off without being measured. The drain is blocked and at the end water is visible leaking. The boundary survey sets 3 and 4 are both outside this area and therefore overestimate the catchmentarea.

7.2 METHODS AND MATERIALS

The fieldinspection was done on 22-3-1991, after a period with a lot of rainfall. Then it was decided to place a few extra

piezometers on the crucial points. In total 9 phreatic piezometers were installed. They had 3 meter of tube under the filter, because of the instable place where they were installed (old drain).

The waterlevel in the piezometers has been measured twice and they are levelled on 25-4-1991.

7.3 RESULTS

The results of the measurements_are_in_table 7.1_The_locations of the piezometers are shown in appendix 19

The measurements from the two data of the piezometers 1, 2, 3, 5, 6 and 7 are giving different flow directions. Conclusions based on these two measurements concerning the catchment boundary cannot be drawn. It is recommended to measure these tubes with the normal monitoring and place another 3 or 4 tubes in addition.

The water that is not measured in drain 1 should be led in catchment area or a new boundary-line has to be drawn. It is hard to find out what is happening in this drain. A good block and a little drain to the recorder would solve the problem of the

table 7.1 levelling and monitoring data extra piezometers

tub	e top tube	waterlevel	waterlevel			
	level(m BOD)	13-4-91	3-5-1991			
17. 1		n. 				
1	104.928	104.55	104.52			
2	104.952	104.56	104.53			
3	104.919	104.56	104.53			
4	104.832	104.45	104.40			
5	104.835	104.40	104.33			
6	104.816	104.33	104.29			
7	104.823	104.31	104.39			
8.	103.697	103.28	-103.27			
. 9 [°]	103.701	103.27	103.23			
	•					

LITERATURE

Beers, W.F.J. Van. The Auger-hole method: a field measurement of the hydraulic conductivity of soil below the watertable, Wageningen, Veenman, 1970

Bouwer, H and R.C. Rice, 1983. The Pit Bailing Method for Hydraulic Conductivity of Isotropic or Anisotropic soil. Soil and Water Div. of ASAE. In Healy and Laak, 1973

Burke, W. Effect of drainage on the hydrology of blanket bog, Kinsealy Research Center, Dublin, 1975. In Streefkerk and Casparie, 1989.

Commissie voor Hydrologisch Onderzoek (C.H.O.), 1986. Verklarende hydrologische woordenlijst. Rapporten en nota's no. 16, T.N.O., 's-Gravenhage.

Eggink, H. and J. Vink, 1989. Een studie naar de verdamping in een hoogveenrestant. Vakgroep Cultuurtechniek, L.U. Wageningen.

Flynn, R.M., 1990. Irish-Dutch peatland study. Clara bog: a hydrological study. Dept. of Geological Sciences, University of Birmingham.

Gerwen, M. Van, 1990. Irish-Dutch peatland study. Preliminary studies on the hydrology of Clara and Raheenmore bog. Department of Hydrology, Soil Physics and Hydraulics, Agricultural University Wageningen.

Gloudemans, E., 1990. Irish-Dutch peatland study. A study of the field work on Clara bog and Raheenmore bog. Department of Hydrology, Soil Physics and Hydraulics, Agricultural University Wageningen.

Henderson, R., 1991. Irish-Dutch peatland study. The hydrology of Clara and Raheenmore raised bogs, co. Offaly. Preliminary report. Sligo Regional Technical College.

Huisman, D.F.M.J., 1991. Raised bogs in Ireland. Hydrological fieldwork at Clara bog and Raheenmore bog (draft report). Department of Hydrology, Soil Physics and Hydraulics, Agricultural University Wageningen.

Hvorslev, 1951, rising head. In Flynn, R.M., 1990.

Ingram, H.A.P., Mires:swamp, bog, fen and moor. General studies. Ecosystems in the world. In Hydrology, pp.67-157,Elsevier, Amsterdam 1983.

Klute, A., 1986. Methods of soil analysis. Part 1: Physical and Mineralogical Methods. Madison, Wisconsin U.S.A.

Molen, P.C. Van Der, 1986. A study on pattern and process in hummock-hollow complexes on Irish raised bogs. Internal report of the Hugo De Vries-Laboratory, department of palynology and paleo/actuo-ecology, University of Amsterdam.

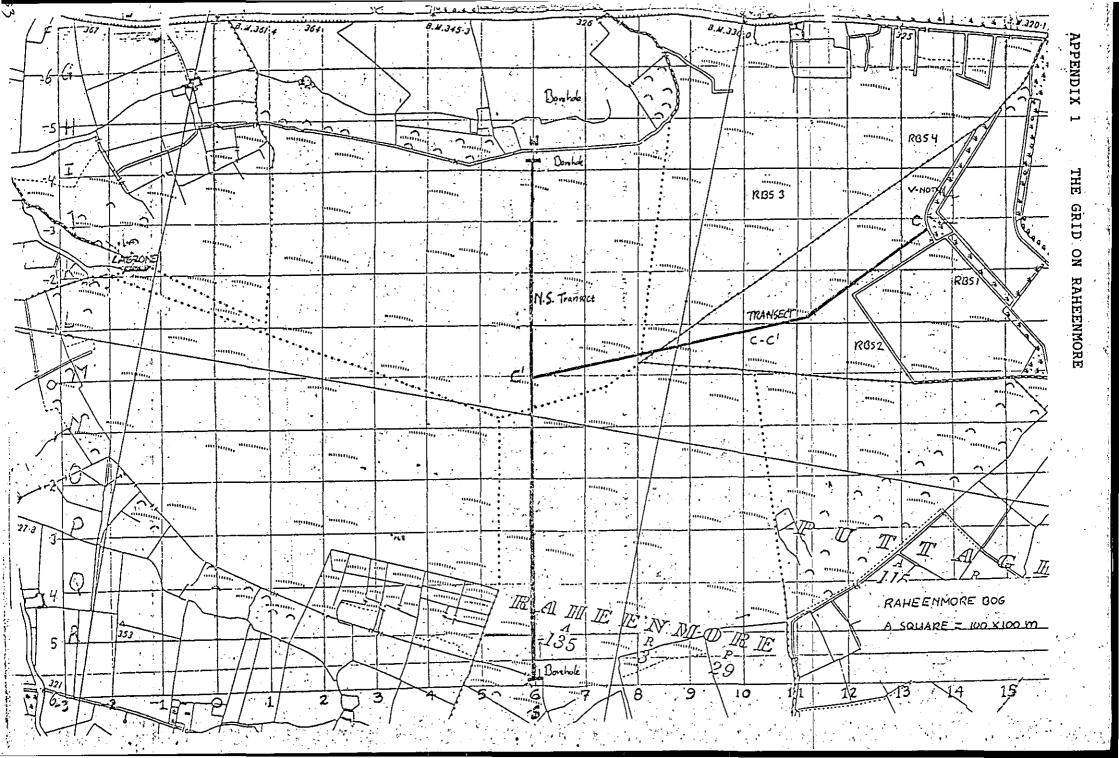
Munsell Colour, Munsel Soil Colour Charts, Baltimore, Munsell Colour, 1975.

Raycroft, 1973, constant head. In Flynn, R.M., 1990.

Schaaf, van der, 1990, Report on the visit to the Clara/Raheenmore bog project 6-12 december 1990

Schouten, M.G.C., Some aspects of the ecogeographical gradient in the Irish ombrotrophic bogs, Katholieke Universiteit Nijmegen, Faculteit Botanie, 1984.

Streefkerk, J.G. and W.A. Casparie, 1989. The hydrology of bog ecosystems, guidelines for management. Dutch National Forestry Service, Utrecht.


Werkgroep Herziening Cultuurtechnisch Vademecum, 1988. Cultuurtechnisch Vademecum. Cultuurtechnische vereniging, Utrecht.

APPENDICES

- 1 Grid Raheenmore
- 2 Data lysimeters Raheenmore
- 3 Calculations storage coefficients of upperlayers in lysimeters with weighing data
- 4 Calculations storage coefficients of upperlayers in lysimeters with water adding data
- 5 Table for determination n-value in the formula of the Guinness method
- 6 Data and calculations of the calibration of the Guinness method
- 7 Graph for the determination of the geometry factor A_p in the Pit Bailing test (piezometer method approach)
- 8 Graph for the determination of the geometry factor C in the Augerhole test
- 9 Data and calculations of the acrotelm transmissivity/ permeabillity tests at 16-4-1991
- 10 Data and calculations of the acrotelm transmissivity/ permeabillity tests at 5-6-1991
- 11 The Von Post and Granlund humification scale
- 12 Data of the first acrotelm mapping
- 13 Data of the supplementary acrotelm mapping in Sphagnum holes
- 14 Cross sections of the acrotelm

15 Nomograms for the determination of the geometric constant in the falling and rising head test

- 16 Data, calculations and graphs of piezometer test 1
- 17 Data, calculations and graphs of piezometer test 2
- 18 Standard paper for Rising head piezometertest and nomogram for determing A'
- 19 Map of drains and additional piezometers on Raheenmore

APPENDIX 2

DATA LYSIMETERS RAHEENMORE .

	-			• •				. •	
		•						•	
	FIXED DATA		•	* • •	۰. ۱		***	•	- -
•	NR INSTAL- DATE	VEGETATION		M. <u>5</u>	VEG. (EN	IGLISH)	ACRO- TELM	TUBE- LENGHT .	
	· •						÷.	(CM) .	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Calluna vul Calluna vul Narthecium Eriophorum Sphagnum sp Sphagnum sp Sphagnum sp Sphagnum sp Eriophorum Eriophorum Narthecium Narthecium	garis (ossifra augusti ossifra augusti ec. ec. ec. augusti augusti ossifra ossifra garis (+Erica) gum folium gum folium folium folium gum +Erica)	Heather Bog Asph Common C Bog Asph Common C Peat Mos Peat Mos Peat Mos Peat Mos Common C Common C Bog Asph Bog Asph Heather	Cotton-Gra Lotton-Gra SS SS Cotton-Gra Lotton-Gra Lotton-Gra	bad bad bad good good ss good good good good good good	66.8 88.0 67.7 67.1 67.8 68.7 67.4 68.5 68.8 69.4 68.6 69.2 67.8 69.5 68.5	
		Calluna vul					good	70.5	
•	LYSIMETER H	lysimeters lysimeters all lysimet HEIGHT: 50 c DIAMETER: 40	with go ers are m	od acrot	elm: K20	880	•		
				-	*			- ×	
			ξ.Ψ	- · · ·	• •		•	. 4	
	· ·								· •
			-	2 1			•	•	
			,	• •	.'			, *	
	· .							;	
- 1									
				•	•			•	
		•							:

54

÷

•

÷ ج. ب ањ 128 - р. 1

÷*

شر ب د

ч,

WEIGHING DATA

. .

	W = Weight	(kg)		. '		ş.		
	DATE	W1	W2	W3	W4	W5	W6	
	07-Apr-91	65.5	. 62.5	63.2				0
	15-Apr-91	65.4			64.2			
	19-Apr-91	64.3					62.	· · · · ·
	26-Apr-91	66.1	63.8	63.7		67.4		• -
,	03-May-91	66.3		:63.5				
	10-May-91	64.9			63.1		63.	
•	17-May-91	62.9		62.4		65.8		
	-23-may-91-	62.5				65.8		
								T., • *
	• •		•			-		
		W7 📜	WB	W9	W10	W11	W12	
	07-Apr-91	64.4	64.4	65.1		63.3		9
	15-Apr-91	65.0	63.8	65.0		62.9		
` •	19-Apr-91	63.3	61.9	63.5				
	26-Apr-91	65.4	63.6	65.9			64.	2
	03-May-91	66.1	64.2	.65.1				
,	10-May-91	64.3	62.9			62.6		3
	17-May-91	63.1	62.3	64.2	63.9		,	
	23-may-91	63.1	62.2	65.0	64.6			-
•						· · ·		+2 °
	•	•					<u></u>	1.1.1
			W14	W15	W16	. k .		
	07-Apr-91	62.2		59.4	63.3		. · ·	
	15-Apr-91	62.8	63.4	61.9	65.0		•	
	19-Apr-91	61.7	61.9	60.8	63.3		*	•
^	26-Apr-91	64.2	64.1	63.2	65.5		**	
	03-May-91	63.6	÷	62.5	65.5		_ ·	
	10-May-91			61.4				
	17-May-91	,61.9		60.1	<u></u> 63.1	•		
	23-may-91	62.6	63.1	59.9	62.8	. r	•	.*
	· · · · · · · · · · · · · · · · · · ·	1 .			••			· .

REMARKS 07-Apr-91 lysimeters overflooding? 15-Apr-91 lysimeter 5 missed the bungs, water in/out flow

WATERLEVEL DATA

WL = Waterlevel in cm from top of tube. B, the first A, and N stand for resp. before, after and no. W and the second A stand for resp. weighing and adding water.

.

.

	•		16. 1		.* ;	1	· · · ·			4					•
	DATE	ORDER	WL1	-	WL2	WL3	. '	WL4		WL5	• .	WL6	• .		
	07-Apr-91			23.7		.1	26.4		23.2	-	24.2	•.	26.6	-	
	15-Apr-91	BW-NA	L.	25.9	- 24		27.6		24.9		23.8			• .	
	19-Apr-91			29.1			31.0		29.3		28.0	•	26.7	, i	
	19-Apr-91			20.9		.7	25.4	•	•				29.8		·
	26-Apr-91			21.8	.23				23.7	;	21.2	• .	23.7	•	•
	03-May-91		•	21.2	•		23.8	• •	22.1		20.5		23.1	•	
	10-May-91				23	•••	26.0		23.1		24.7		24.9		٠.
	15-May-91		*	26.2	24		27.5		27.5		27.5		27.5 _.		•
				29.7	25	• ·	30.9		31.8	• .	29.2	3	30〔2〕		
	15-May-91			27.3	26	.1	26.4	•	26.2		24.5	3	30.4	· · .	
	17-May-91			30:3	26	.8,	29.2		29.1	•	26.6		31.1	ал ал . Э.	٠,
	21-May-91			31.0	29	. 2	32.0		34.0		28.6	*	3.0	÷	•
ŧ	23-May-91		•	31.2	. 28	•3 ·	30.5	- ,	30.7		26.1	~	31.3	 	
	23-May-91	AW-AA	•	31.2	28	.3	30.5	. `	30.7		26.1		31.3		

×. 1

• . :

,		1	· * . · · ·	<u> </u>				
DATE	ORDER	WL7	WL8	L9	WL10	WL11	WL12	
07-Apr-91		25		25.6	27.7	26.5		
15-Apr-91	BW-NA	24	· · · · · · · · ·	26.6	- 30.0	27.1	26.5	-
19-Apr-91				29.7	23.0		29.4	
19-Apr-91				23.9	27.2		25.3	
26-Apr-91		23		23.5	27.3		25.6	
03-May-91	AW-AA	22		25.9	25.7		25.2	
10-May-91		25		26.3	27.7	27.5	28.2	
15-May-91		28			32.0	29.8	30.7	
15-May-91		26		25.6		26.8	- 27.8	
17-May-91	BW-BA	28		27.9	28.7	28.6	29.7	
21-May-91		30			29.9	29.7	•	
23-May-91		29		28.1	29.2	29.7		
23-May-91		27		25.0	25.1	20.8	30.2 27.7	
			••			_ · · · <u>-</u>		

	. ,		· · ·		•	
	ORDER	WL13	WL14	WL15	WL16	
07-Apr-91		27.7	28.5	29.5	31.4	
15-Apr-91	BWNA	26.6	27.7		27.7	
19-Apr-91	BW-BA	28.7			30.5	
19-Apr-91		24.5			25.2	
26-Apr-91		24.0	26.4		25.8	
03-May-91		25.6				
10-May-91		^j 27.3		26.2	29.1	
15-May-91		29.4			31.7	
15-May-91		26.7	27.4			
17-May-91		28.1	29.0	28.7	30.8	
21-May-91		29.0	29.2	29.4	31.5	
23-May-91		28.3	•	28.5		
23-May-91		26.4	27.2	28.5	30.4 30.4	
	an nn	20.4	41.4	40.0	30.4	

WATER ADDING DATA

V = volume of added water (1)

• - •orune	or a	uden water	(1)					•
DATE	ADD	V1	V2	V3	V4	V5	V6	r
13-Apr-91		-2.30	-3.23	-3.55	-3.04		-3.21	·
19-Apr-91		2.00	2.00				•	÷. `,
26-Apr-91		-0.70	-0.44		•			
03-May-91		0.00	-0.94		=0.46		-1.00	
08-May-91		0.50				•	0.00	
15-May-91		1.00					0.00	
17-May-91		1.00	0.00		•		0.00	
21-May-91		1.00	1.00				1.00	
		0.00	0.00				0.00	
	201	0.00	0.00	0.00	· 0.00	.0.00		
			۲	•				<u> </u>
DATE	ADD	V7	V8	V9	,V10	V11	V12	
13-Apr-91		-2.27	-3.00	-1.30			-3.14	
19-Apr-91		2.00	2.00	2.00			2:00	ti i i t
26-Apr-91		-0.26		-0.31			-0.40	·. _
03-May-91		0.00		0.00			0.00	·
08-May-91		0.00	1.00	1.00			0.00	
15-May-91		1.00	2.00					
17-May-91		0.45	0.55	1.00			0.50	
21-May-91	. —	1.00	1.00	•			•	
23-May-91	bef	0.70	1.00	1.00			1.00	
	-							
	z ., .		· · · ·	•		an <u>t</u> in in i		- 1 94
DATE	ADD	V13 .	V14	V15	V16	ٽي : ت		
13-Apr-91	-	-1.75	2.61	-0.86	-1.52	•		
19-Apr-91	aft	2.00	2.00	2.00	2.00			•
26-Apr-91	aft	-0.79	-0.37	-0:80	-0.47			-
03-May-91		-0.83	0.00	-0.84	0.42	· · ·		
08-May-91		0.00	0.00	0.00	Õ: OO			
15-May-91		1.00	1.50	0.00		· · · · ·		
17-May-91		0.50	0.50	0:00			Уч	
21-May-91		1.00	1.00	1.00				
23-May-91	bef	0.81	0.58	0.00	0.00	•	-	
			··· · · · ·			م	• • • •	· · ·
		I V						•
ADD explain		the water_	is added	to the 1	ysımeter	Defore or	- 	· · · · ·
after weig	ning.		· ·			na se	م میہ س	
	÷.				•. • • • •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	·*		•			•		, J .
RAINFALLL	מדמ		×.					
MATHIAND .		тарана 1 страния 1 страния					, 3	
DATE	RATIN	FALL (MM)			-	· · · · · ·		
12-Apr-91	66			. *		167.		
19-Apr-91	0.3							
26-Apr-91					-	•	· •	<u>,</u> 1
03-May-91	24						· ·	
10-May-91	3.:	•	•	1			· · · · ·	
17-May-91	1.3				۰ .			
••••••••••••••••••••••••••••••••••••••				· · · · · ·		بې، نې د مېسې		
			•				•	

SURFACE LEVEL DATA

Levels meausered from wood. Height wood above edge of lysimeter = 24.3 cm. Measured at 17-May-91

. .

Lysimeter level (cm)

1 2 3 4 5	25.3 26.7 27.5 26.6 25.6 26	wood	surface level	1 ↑ 24.3 cm
7 8 9 10	24.6 23.6 26.3 27.5			
11 12 13	22.9 22.6 27.9			
14 15 16	26.5 29.8 24.9			

÷

x x

• •

			` .				· · ·	,		-	
	APPENDIX 3	CALCULI DATA (OF SI	ORAGE	COEFFI	CIENTS	WITH	WEIGHI	NG	
			•	.*			•		. · · ·		-
	· · · · · · · · · · · · · · · · · · ·	1. 1.	· "	• •		•	· · · ·		·		
		date					*	•••			e s L
	lysimeter	-	1	2	3		5	6	`7	8	
	Surface 1(wood)		25.3	26.7		26.6	25.6	26.0			
	Surface 1(edge)	lys)	1.0		•	2.3		1.7	0.3	-0.7	
	tube leng		16.8	18.0	17.7	17.1	17.8	18.7	17.4	18.5	· · ·
	layer	26-4	4.0	3.1	2.9	2.7	1.4	2.7	5.4	9.4	r ;
	upper border	03-4	3.4	2.6	5.1	3.7	, t	4.5	4.5	с ¹	۰.
	, J	26-4	4.0	3.1	2.9	2.7	1.4	2.7	5.4		2
		03-5	3.4	2.6	5.1	3.7	<u>`</u>	4.5	4.5	8.5	
		26-4		-3:1	43 .	2.7	1.4	2.7	· · · · · · · · · · · · · · · · · · ·	9.4	, · ·
		03-5	3.4	2.6	5.1	3.7		4.5	4.5	૾ૢૼ૾ 8.5 ૼ	÷.
	layer	176	10 5		• •	• •	С. - т с	10 7	10 F	.11.7	
	under border	17-5 22-5	12.5	6.4	8.3	-	/.5	10.7		₹11. • 1 °Ç	
	niger porget	23-5	13.4	•			7 0	10.9	9.3		
		23-5 17-5	13.4 12.5	7.9 6.4	8.3	11.3 9.7	7.0	10.9	9.3 10.5	11.7	
	,*	19-4	12.5		10.1		8.9	9.4		13.2	
		19-4	11.3		10.1	9.9	• • • • • • • • • • • • • • • • • • •	9.4	10.3	13.2	
		12-4	11.3	0.0	5 10.1	3.5	•	2.4	10.3	13.2	
			•	. •	• • • •						
	Storage	26-4/1	0.30	0.63	0.19	0.25	0.21	0.31	0.36	0.45	
	coefficient	03-4/2		0.59	•	0.26		0.34			
		26-4/2		0.58		0.25	0.23	0.33		4	
		03-5/1		0.63	0.27	0.27		0.31		0.47	· .
-	· .	26-4/1		0.49	0.21	0.21	0.16	0.30		0.36	
-		03-5/1		0.51	0.27	0.22		0.29		0.39	-
	average storage	coef	0.27	0.57	0.25	0.24	0.20	0.31	0.41	0.42	`. <u>.</u>
	are age scorage	COEL	0.421	0.57	0.20	0.24	0.20	0.01	0.41	U . 44	

• <u>`</u>

•••,

5 ; - [^]

APPENDIX 4

CALCULATIONS OF STORAGE COEFFICIENTS WITH WATER ADDING DATA (1)

1

66

date: 19-4-1991

· · · · · · · · · · · · · · · · · · ·					
lysimeter	1 2	3	4	5	6
Volume added (1)	2.00 2.00	1.50	1.68	1.26	2.00
Waterlevel before (cm)	29.1 26.9		29.3	28.0	29.8
Waterlevel after (cm)	20.9 23.7	25.4	23.7	21.2	23.7
• •			2011	41.2	23:13
Surface level (wood)	25.3 26.7	27.5	26.6	25.6	26.0
Surface lev.(edge lysi)	1.0 2.4	3.2	2.3	. 1.3	1.7
tube lenght	16.8 18.0	17.7	17.1	17.8	18.7
layer (under border)	11.3 6.5	10.1	9.9	8.9	9.4
layer (upper border)	3.1 (3.3	4.5	4.3	2.1	3.3
Storage coefficient	0.20 0.50		0.24	0.15	*
· · ·		0.21	0.24	0.13	0.26
				•	
lysimeter	7 8	9	11 .	12	'a 13
с					
Volume added (1)	2.00 2.00	2.00	2.00	2.00	2.00
Waterlevel before (cm)	28.0 31.0	29.7	30.3	29.4	28.7
Waterlevel after (cm)	23.2 25.8	23.9	26.0	25.3	24.5
* 			2010		41.0
Surface level (wood)	24.6 23.6	26.3	22.9	22.6	27.9
Surface lev.(edge lysi)	0.3 -0.7	2.0	-1.4	-1.7	3.6
tube lenght	17.4 18.5	18.8	18.6	19.2	17.8
layer (under border)	10.3 13.2	8.9	13.1	11.9	7.3
layer (upper border)	5.5 8.0	3.1	8.8	7.8	3.1
Storage coefficient	0.33 0.31	0.28	0.37	0.39	0.38
₩3~		• • • • • •		0.05	0.00
	-	-			-
lysimeter	14 15	16			
	· · ·	والمراج			
Volume added (1)	2.00 2.00	2.00	Ť*	-9	
Waterlevel before (cm)	30.2 328.1	30.5			
Waterlevel after (cm)	25.5 🧮 24.2	25.2			•
	•	•		·	
Surface level (wood)	26.5 29.8	24.9			
Surface lev.(edge lysi)	2.2 5.5	0.6		•	•••
tube lenght	19.5 18.5	20.5	· _		• . •.
layer (under border)	8.5 4.1	9.4	Ę		:
layer (upper border)	3.8 0.2	4.1			1 4 4
Storage coefficient	0.34 0.41	0.30	4 3		
	•			· ·	at s

DETERMINATION OF STORAGE COEFFICIENT WITH WEIGHING DATA (2)

6

.

· •		· ·			•				.* -
	[:] date				· · ·				•
lysimeter		9	* 10	11	12	13	14	15	16
Sumford 1/mon	T.				<i></i>				
Surface 1(wood			27.5			27.9		29.8	24.9
Surface l(edge tube leng	e iysj		3.2			3.6			0.6
cape lend	•	18.5	19.4	18.6	19.2	17.8	19.5	18.5	20.5
layer	26-4	3.0						0.7	
upper, border	03-4	. . .		7.5		2.6 4.2		-0.7	
-FF+2, Doluci	26-4		•**	8.3			4.7		4.7
•••• •		· · · · · · · · · · · · · · · · · · ·	<u> </u>	7.5		4.2	4.5	1.2	
· · · · · · · · · · · · · · · · · · ·	26-4	3.0			· · · ·	- I - Z	:	-0.7	4.7
	03-5							1 2	
	\$,		· -			,	
layer	17-5	7.4	•			6.7			9.7
under border,		11 F	- '		12.2		7.3		9.3
	23-5				11.9		8.5		9.3
	, 17-5	and the second	7.	13.1	11.9	7.3	8.5	4.7	9.7
		9.2		۰.	. 11 S			4.1	9.4
	19-4					÷	,	4.1	9.4
-		•		· · ·	ŝ				
Storage	26-4/	1	-0-44	0 40	ñ 25	0.52	0 46	0.00	
coefficient	.:03-4/		0.49	0.50	0.45				
· · · · · · · · · · · · · · · · · · ·	26-4/		0.45	0.00	0.43	0.46	0.51	0 47	الالا سطنان
مسین مراجع	03-5/		0.40	0.44			0.51	0.40	
1. 	26-4/			V. 11		· , •		0.37	
- -	03-5/			· · ·				0.39	
۲. 45. ¹			•			et ge			and the second second
average storag	re coef	0.31		0.42	0.46	0.44	0.49	0150	0.42
*	4	14 	• •	 	· · · · ·			1	*
-	-			• •	• · · ·			· ·	

	1	-			· · · ·	
		•				.4:
					· · · ·	
CALCULATIONS STORAGE COE	FFICIENTS	WITH	WATER ADDI	NG DATA	(2)	•
	, ,					-
15-5-91			•			
Lysimeter	3	4	. 5	7	. 8	9
Volume added (1)	1.07	1.00	1.00	1.00	2.00	1.50
Waterlevel before (cm) Waterlevel after (cm)	30.9 26.4	31.8 26.2	29.2 24.5	28.8	32.9	30.1
	-	20.2	24.5	26.0	26.2	25.6
Surface level (cm) Surface level	27.5 3.2	26.6 2.3	25.6 1.3	24.6	23.6	26.3 🧠
tube lenght	17.7	17.1	17.8	0.3 17.4	-0.7 18.5	2~0 18.8
layer (cm -surface)	10.0	12.4	10.1	11.1	15.1	9.3
layer Storage coefficient	5.5 0.19	6.8 0.14	5.4 0.17	8.3 0.29	8.4 0.24	4.8 0.27
	0110	0.11	0.17	0.29	0.24	0.21
Lysimeter	10	11	12	14	16	
· · · · · · · · · · · · · · · · · · ·	-		-	1-4	10	
Volume added (l) Waterlevel before (cm)	2.00 32.0	1.00 29.8	1.00	1.50	1.00	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،
Waterlevel after (cm)	25.0	29.8	30.7 27.8	$31.2 \\ 27.4$	31.7 29.0	· · · ·
Surface level (cm)	27.5	22.9	22.6	26.5	24.9	· •
Surface level	3.2	-1.4	-1.7	20.5	0.6	
tube lenght layer (cm -surface)	19.4	18.6		19.5	20.5	· · · · · · · · · · · · · · · · · · ·
layer	9.4 2.4	12.6 9.6	13.2 10.3	9.5 5.7	10.6 7.9	
Storage coefficient	0.23	0.27	0.28	0.32	0.30	
23-5-91				•	•.	
23-3-91			•			
Lysimeter	8	· 9	10	æ.		•
Volume added (1)	1.00	1.00	1.00 "		•	· · ·
Waterlevel before (cm) Waterlevel after (cm)	32.3	28.1	29.2	•		
Adder level after (CM)	28.5	25.0	25.1			
Surface level (cm)	23.6	26.3	27.5	• •		
Surface level tube lenght	0.7 18.5 .	2.0 18.8	3.2 19.4			
layer (cm -surface)	14.5	7.3	6.6			
layer Storage coefficient	10.7	4.2	2.5			
beorage coerricient	0.21	0.26	0.20		a.	٤
Lysimeter	. 1	2	3	4	5	6
average storage coeff.	0.21	0.24	0.20	0.19	0.16	0.26
Lysimeter	7	8	9	10	11	12
average storage coeff.	0.31	0.25	0.27	0.21	0.32	0.33
Lysimeter	13,	14	15	16	-	
average storage coeff.	0.38	0.33	0.41	0.30		
	·		·	•		•.
					۰.	• •

•

.

,

.

·	METHOD FOI				
			• •		•
· · · ·			•		·
first column:	n .				
second column:	· · ·	21n(n) -	1) / ln(n)	
	÷ .			/	
	÷ .	·	n '.	• • •	
1.1 0.203332		5.1	13.35071		
1.2 0.413319			13.79466		-
1.3 0.629931	ç'.		14.24386		
1.4 0.853133			14.6983		
1.5 1.082879	, -	5.5	15.15796		
1.6 1.319123			15.62282	• , • • •	
1.7 1.561816		5.7	16.09285		
1.8 1.810906		5.8	16.56805	-	··
1.9 2.066346		5.9	17.0484		
2 2.328085		6	17.53387	• * .	د ۹ د. بو
2.1 2.596075		6.1	18.02446	• *	
2.2 2.87027			18.52014		
2.3 3.150622			19.02089		• • •
2.4 3.437087			19:52672	-	
2.5 3.729623			20.03759	· · · ·	
2.6 4.028185			20.55349	1	
2.7 4.332735			21.07441	• .	•
2.8 4.643231	12		21.60033		
2.9 4.959637			22.13124		
3 5.281914			22.66712	-	-
3.1 5.610026			23.20796		
3.2 5.94394			23.75376	,	•.
3.3 6.28362,	1 . ·	· ·	24.30448	· · ·	 •
3.4 6.629034			24.86012		
3.5 6.980151	· ·		25.42067		
3.6 7.336938			25.98612	•	•
3.7 7.699367			26.55645		`.
3.8 8.067408		7.8	27.13164		• • •
3.9 8.441032 4 8.820213			27.7117	,	
4.1 9.204923			28.2966		۰.
4.2 9.595136			29.48088	1.2	
4.3 9.990827			30.68441	•	
4.4 10.39197			31.90709		
4.5 10.79854			33.14884		· . •
4.6 11.21052	· .		34.40957		
4.7 11.62788			35.6892		
4.8 12.0506			36.98765	•	, `
4.9 12.47866			38.30484		
7.2.14.4/000		9.8	4 39.6407		

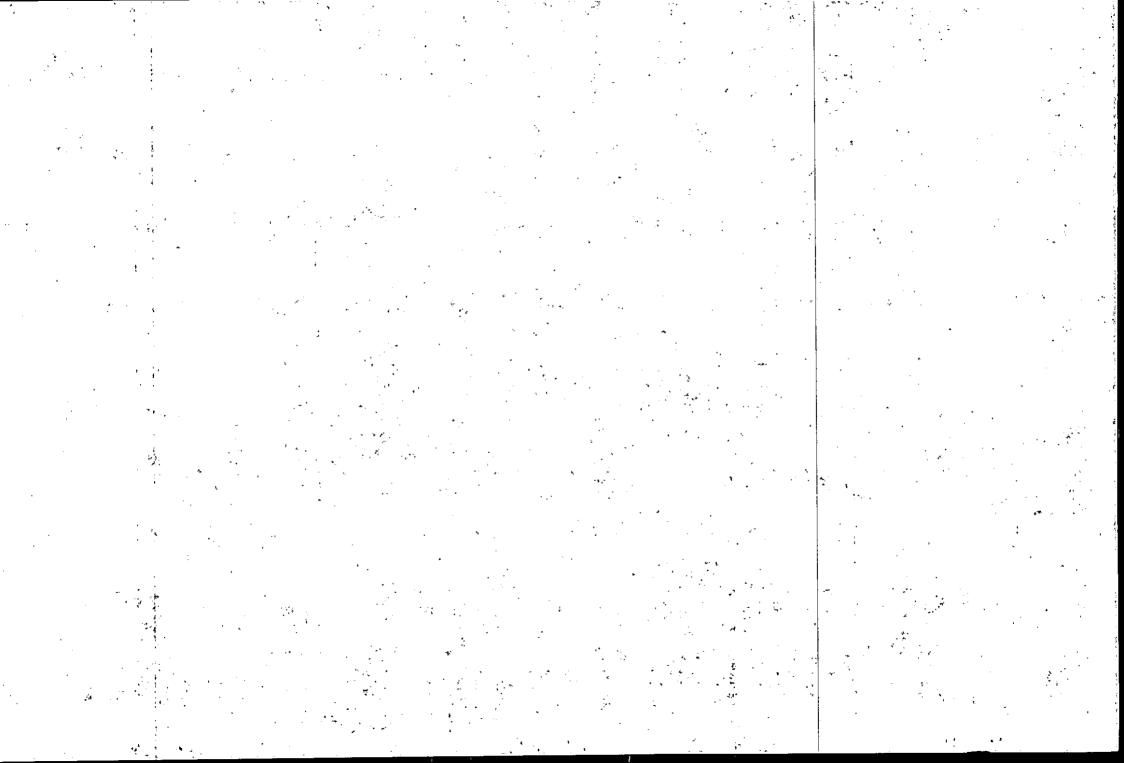
5a.

, .

. · • .

4 ¹		- 4		** -	
APPENDIX 6			OF THE	CALLIBRATION	OF THE
•	GUINNESS M	IETHOD			
collibration.	····	- •		1	

	ESS MET		D OI	THE CALLIDA	ALTON, (Ţ
callibration with pl	ates		•	calculati	on with	n formu:	1. 1
gat	1	2		•	1	: 2	
x-coord	. j95	j95		x-coord	j95	-	
y-coord	. 870		·	y-coord	870	870	1, 1
length (cm)	; 18		**	length	18	17	
width (cm)	· 16			width	16	17	
depth (cm)	40	. 40		depth	38	38	5
thickn acrotelm (cm)	. 38	40	·	r eff.(m)		0.10	. .
wat.level (cm)	-2		••	wat.level	-2	-2	
tubes	1+1+12	1+1+12				1+1+12	
Q (m3/s)		2E-05		Q (m3/s)	-	2E-05	
HO (cm)	. 67.2	58.6		ĤOÌÍ	80.0	57.5	
drawd. big hole (cm)	63.4	50.7	1	Drawdown		55.9	• •
drawd small hole(cm)	2.0	3.2		time (s)	60	120	•
distance x (cm)	32	33 '	•				• • •
distance y (cm)	1.8	4.7	· · · ·	s(w)cons.	0.010	0.016	•
welled width w(w)	16		• • • •	n(form.)		18.8	
welled height h(w)	32.2	30.1		n	5.3	6.3	
gradient i (-)	0.056	0.142		ч 	· .		
well.surf. A(w) (m2)		0.0512		T`(m/dag)	57.0	39.3	-
velocity v (m/s)	0.0005	0.0005					
					•		
permeability k (m/d)	742						
transm. T (m/d)	282	118	9 	•			•.
			· • •			,	
	•		•	· .			
callibration with fir	ngermetl	hod	A				•
				÷			


bergfact.	0.5		
pie ·	3.1416		
gat '	2	3	4
x-coord	j95	-	j95
y-c oord'	870		
length (cm)	17		
width (cm)	17		•
depth (cm)	. 38		
r eff.(m)	0.10		
wat.level (cm)	-2		-2
tubes		1+1+12	
Q (m3/s)	2E-05		2E-05
time (s)	120		160
HO (cm)		55.6	
Drawd. big hole (cm)	55.9		55.9
drawd small hole(cm)	1.1		
distance x (cm)	25		
distance y (cm)	0.5		
n 20 38	3.3		
T finger (m/dag)	82.4		51.5
calculation with form	nula	• • •	· .

s(w)cons.	0.016	0.005	0.016
n(form.)		22.4	
n	- 6.3	6.9	4.9
T formula (m/s)	39.3	132.1	34.0

۳.

64.

Ş.

APPENDIX

GRAPH FOR THE DETERMINATION OF THE GEOMETRY FACTOR AP IN THE PIT BAILING METHOD

÷

ì

D/r

65

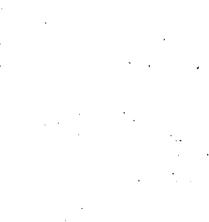
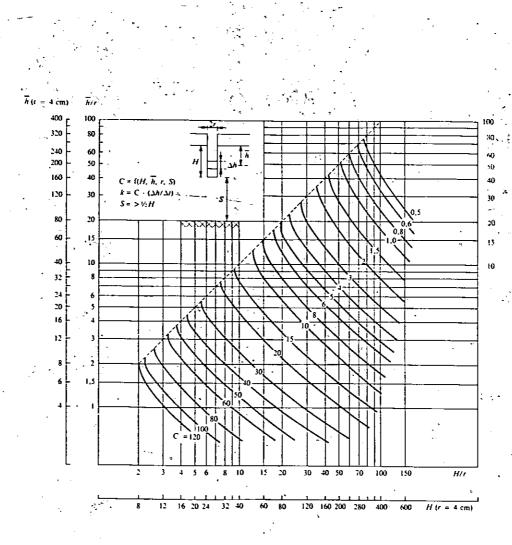


Fig. 4—Curves of A,/r vs. D/r for different values of L,/r (on the curves) for pit bailing method in soil undertain by impermeable material.

0.7


.

0.4 0,3 9.2 9.1 o.c

8 NOMOGRAM FOR THE DETERMINATION OF THE GEOMETRY FACTOR C IN THE AUGERHOLE METOD FORMULA

APPENDIX 9

DATA AND CALCULATIONS OF THE ACROTELM TRANSMISSIVITY/ PERMEABILITY TESTS AT 16-4-1991

0	ĮU	INNESS	METHỌD	

þe	rg	fact	0	. 5

	x-coord	1	1	1	1	1	. 1	1	ì	•
	y-coord	200	300	500	600	800	900	1000	1100	
	vegetation		moss			moss		1000	moss	
	length (cm)	- 19	20	17	18	18	16	· 17.		
	width (cm)	15	18		16	17	16	14	17	ŕ
	depth (cm)	38	40	31	31	37		× 30	33	•
	r eff.(m)	0.10	0.11	0.10	0.10	0.11	0.10	0.09	0.10	
	<pre>wat.lev(cm)</pre>	-2	-2	-2	-2	-2	-2	-2	-2	
	hsur-htub	0	0	-2	-2	-2	õ	1	0	
		1+1+12	1+1+12	1+1+12	1+1+12	1+1+12			1+1+12	
	Q (1/s)	0.025	0.025	0.025	0.025	0.025	0.118	0.025		۰.
	HO (cm)	47.7	49.3	57	54.6	55.1	37.2	56'		
	Hc (cm)	46.1		56.2	53.4	54.5	36.8	54.8	69.7	Ĩ,
	time (s) 🔅	70	40	30	120	35	30	55	60	
	s(w) (m)		0.006	0.008	0.012	0.006	0.004	0.012	0.006	÷
	n (formula)	9.3	12.2	8.1	26.4	12.8	117.9	12.8	26.4	•
	n	4.1	4. 9	3.8	7.7	5.0	18.8	5.0	7.7	
				••			• .			
	T (m/day)	30	90		58	92	1187	46	116	• •
2	· .		•			۰.				*
	· •.	-			•	e.			۰.	
	_		•				•			
	x-coord	1	. 1	đ	p	Ó	'n	m	k	Ţ
	y-coord	1200	1300	600	, 600	600	600	600	600	
	vegetation	MOSS	moss		moss	moss	moss	moss	moss	
	length (cm)	16	-17	20	20	19	20	22	. 20	
	width (cm)	16	16	17	19	18	• 19	20	15	
	depth (cm)	30	34		40	32	40	39	38	
	r eff.(m)	0.10	0.10	0.11	0.12	0.11		0.13	0.11	
•	wat.lev(cm)	-2	-2	-2	-2	2	-2	-2	-2	
	hsur-htub	3	1	0	1	0	-2		0	
					1+1+12				1+1+12	
	Q(1/s)	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	
	HO (cm)	55.5	51.8	36.5	32.3	38	50.1	52.5	49	
	Hc (cm) time (s)	54.4	50.8	35.5	31	37	48.6	51.9	47.2	
	cime (5)	90	75	90	60	50	90	65	80	
	s(w) (m)	0.011	0.01	0.01	0.013	0.01	0.015	0.006	0.018	
	s(w) (m) n (formula)	0.011 24.1	$\begin{array}{c} 0.01 \\ 20.2 \end{array}$	0.01 19.1	6.7	8.9	9.9	17.6	, 8.8	
	s(w) (m)	0.011	0.01	0.01				4 .*		
	s(w) (m) n (formula)	0.011 24.1	0.01 20.2 6.5	0.01 19.1	6.7	8.9	9.9	17.6	, 8.8	

·	محاديا ساديني المرشان المشاملين المنتقاد		ومصر من و روزند الارام و وم الا م	70 (N. A - 1	· · - • · · · · ·		- 1 mar			• • • • • · · · · · · · · · · · · · · ·
•			• •			• ,		- 		
÷,		. L			· · · ·		ب ور محمد ا		ана — С. А. А. А.	· · · · ·
		N .						- 	· • ·	•
								· . ·	•	
	PIT BAILING METH	IOD, TH	IIEM EQUAT	ION	. :	۱ ۲۰۰		••.		
		• •	· · ·			· · · · · ·	÷ •		· ·	
	x-coord 1			1			ľ	•		
	y-coord 0)		-100			100			•
	vegetat B/M		· ·	Γ M			M			
	length (cm) 17	-		16	•	. •	20	*		
	width (cm) 16			15			18		-	
	depth (cm) 39 hsur-htub 1	ŧ.		41			. 37			r
	wat.lev(cm) -2		· ·	2	•		6			
	D perm.(cm) 10			-2		•	-2			
	HO (cm) 67.8		· · ·	10 56	4 * *		15 39.7		•	
1	Drawdown(cm)64.8			53.2		•	36.9	•		-
54			<u>K (m/d)</u>		lovol			lovel	ž (mĺd)	Ť.,
	0	64.8		<u></u> 0	53.2	κ(m/_α)_		_1 <u>eve1_1</u> 36.9	«_(m/u),	• • • • • • • • • • • • • • • • • • •
•	· •	65	41.3		53.8			37.1	71.1	
	•	65.2	77.6		54 -		•	37.4	109.1	مې سرچې سرې و
•		65.4			54.2	142.2		37.6	68.5	
		65.5	• . •		54.4			37.8	132.4	
-	46	65.7	92.1			111.9			78.0	19_1 : 19 - 1 9
	60	65.9				117.5	70	38	65.5	
	67	66	67.3		54.9	63.5	· · ·		69.1	
		66.1	61.9	75	55	103.8	93	38.2	56.2	
		66.2			55.1	61.0	106	38.3	59.8	••••
۰.		66.3	55.2	112	55.2	46.3	130	38 4	34.6	
		66.4	,							
	•	66.5	62.7	• •		· · · · ·	•			
		66.6		•	-		•		به به الماليز في	
-		66.8	45.5				•.		و او معنو ک	1
		66.9		L_44						4 ³
	k (m/d) t=75	-185	51.5	t=11-	-112	103.7	t≈52-	-130 🕐	60.5	
•	x-coord 1			 1			سبب -		میں ہے۔ **	
•	x-coord 1 y-coord 400		e se e	1		and the second second	j	*	، سریت ۱ ۲۳ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲	
•	y-coord 400		e de re	1 700		-ulit i	j 600			
•	y-coord 400 vegetat			1 700 B/M			j 600 M			
•	y-coord 400 vegetat length (cm) 17		بر این می این این این این این این این این این ای	1 700 B/M 16			j 600 M 19			
	y-coord 400 vegetat length (cm) 17 width (cm) 16			1 700 B/M 16 16			j 600 M 19 16			
	y-coord 400 vegetat length (cm) 17			1 700 B/M 16 16 35		1897 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	j 600 M 19 16 31			
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32			1 700 B/M 16 16			j 600 M 19 16			
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15			1 700 B/M 16 16 35 5			j 600 M 19 16 31 -1			
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53			1 700 B/M 16 35 5 -2 12 48.5			j 600 M 19 16 31 -1 -2 10 48			
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9			1 700 B/M 16 35 5 -2 12 48.5 46			j 600 M 19 16 31 -1 -2 10 48 45.4			
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time	level		1 700 B/M 16 16 35 5 -2 12 48.5 48.5 46 time	level 1	K (m/d)	j 600 M 19 16 31 -1 -2 10 48 45.4 time	level	K (m/d)	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time	1eve1 49.9	K (m/d)	1 700 B/M 16 16 35 5 -2 12 48.5 46 time 0	level 1 45.9	K (m/d)	j 600 M 19 16 31 -1 2 10 48 45.4 time 0	leve1		
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 5	level 49.9 50.3	K (m/d) 131.7	1 700 B/M 16 16 35 -2 12 48.5 48.5 48.5 time 0 6	level 1 45.9 46.1	K (m/d) 178.1	j 600 M 19 16 31 -1 2 10 48 45.4 time 5	1eve1 45.4 45.3	-56.0	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 5 9	level 49.9 50.3 50.5	K (m/d) 131.7 88.1	1 700 B/M 16 35 5 -2 12 48.5 48.5 46 time 0 6 11	level 1 45.9 46.1 46.3	K (m/d) 178.1 227.1	j 600 M 19 16 31 -1 2 10 48 45.4 time 5 11	level 45.4 45.3 45.7	-56.0 213.6	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 5 9 13	level 49.9 50.3 50.5 50.8	K (m/d) 131.7 88.1 148.3	1 700 B/M 16 35 5 -2 12 48.5 46 time 0 6 11 15	level 1 45.9 46.1 46.3 46.5	K (m/d) 178.1 227.1 304.5	j 600 M 19 16 31 -1 -2 10 48 45.4 time 5 11 16	level 45.4 45.3 45.7 45.9	-56.0 213.6 138.6	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18	level 49.9 50.3 50.5 50.8 51	K (m/d) 131.7 88.1 148.3 86.3	1 700 B/M 16 35 -2 12 48.5 46 time 0 6 11 15 22	level 1 45.9 46.1 46.3 46.5 46.7	K (m/d) 178.1 227.1 304.5 188.6	j 600 M 19 16 31 -1 2 10 48 45.4 time 5 11 16 20	level 45.4 45.3 45.7 45.9 46	-56.0 213.6 138.6 90.4	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22	level 49.9 50.3 50.5 50.8 51 51.2	K (m/d) 131.7 88.1 148.3 86.3 118.8	1 700 B/M 16 16 35 -2 12 48.5 48.5 48.5 46 time 0 6 11 15 22 29	level 1 45.9 46.1 46.3 46.5 46.7 46.9	K (m/d) 178.1 227.1 304.5 188.6 207.1	j 600 M 19 16 31 -1 2 10 48 45.4 time 5 11 16 20 28	1eve1 45.4 45.3 45.7 45.9 46 46.2	-56.0 213.6 138.6 90.4 99.2	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 13 18 22 25	level 49.9 50.3 50.5 50.8 51 51.2 51.4	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8	1 700 B/M 16 16 35 5 -2 12 48.5 48.5 48.5 46 time 0 6 11 15 22 29 35	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4	j 600 M 19 16 31 -1 2 48 45.4 time 5 11 16 20 28 35	level 45.4 45.3 45.7 45.9 46 46.2 46.4	-56.0 213.6 138.6 90.4 99.2 126.0	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29	level 49.9 50.3 50.5 50.8 51 51.2 51.4 51.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4	1 700 B/M 16 35 5 -2 12 48.5 48.5 time 0 6 11 15 22 29 35 41	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9	j 600 M 19 16 31 -1 2 10 48 45.4 time 5 11 16 20 28 35 42	level 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6	-56.0 213.6 138.6 90.4 99.2 126.0 142.3	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 HO (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36	level 49.9 50.3 50.5 50.8 51.2 51.2 51.4 51.5 51.7	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1	1 700 B/M 16 16 35 -2 12 48.5 48.5 48 5 11 15 22 29 35 41 48	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1	j 600 M 19 16 31 -1 2 10 48 45.4 time 0 5 11 16 20 28 35 42 52	level 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 HO (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0	1 700 B/M 16 35 -2 12 48.5 48 5 46 11 15 22 29 35 41 48 54	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8	j 600 M 19 16 31 -1 2 10 48 45.4 time 0 5 11 16 20 28 35 42 52 62	level 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6	1 700 B/M 16 35 -2 12 48.5 46 time 0 61 15 229 35 41 48 54 61	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2	j 600 M 19 16 31 -1 2 48 45.4 time 5 11 16 20 28 35 42 52 62 71	level 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.6 46.8 47 47.1	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 13 18 22 25 29 36 42 50 61	level 49.9 50.3 50.5 50.8 51 51.2 51.4 51.5 51.7 51.9 52.1 52.3	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3	1 700 B/M 16 35 -2 12 48.5 48.5 48.5 time 0 6 11 15 22 35 41 48 54 61 68	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.3 47.4 47.5	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7	j 600 M 19 16 31 -1 20 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78	1eve1 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47 47.1 47.1 47.2	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2	1 700 B/M 16 16 35 -2 12 48.5 48 5 46 11 15 22 29 35 41 48 54 61 68 80	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1	j 600 M 19 16 31 -1 20 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85	1eve1 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47 47.1 47.2 47.3	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67	level 49.9 50.3 50.5 50.8 51 51.2 51.4 51.5 51.7 51.9 52.1 52.3	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3	1 700 B/M 16 16 35 -2 12 48.5 48 5 46 11 15 22 29 35 41 48 54 61 68 80	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.3 47.4 47.5	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97	level 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.3 47.4	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67 75	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4 52.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2 101.5	1 700 B/M 16 35 -2 12 48.5 48.5 time 6 11 15 22 35 41 48 61 68 80 92	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1 110.3	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97 112	1evel 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.4 47.5	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4 88.2	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4 52.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2	1 700 B/M 16 35 -2 12 48.5 48.5 time 6 11 15 22 35 41 48 61 68 80 92	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97 112	1evel 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.4 47.5	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67 75	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4 52.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2 101.5	1 700 B/M 16 35 -2 12 48.5 48.5 time 6 11 15 22 35 41 48 61 68 80 92	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1 110.3	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97 112	1evel 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.4 47.5	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4 88.2	
	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67 75	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4 52.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2 101.5	1 700 B/M 16 35 -2 12 48.5 48.5 time 6 11 15 22 35 41 48 61 68 80 92	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1 110.3	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97 112	1evel 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.4 47.5	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4 88.2	
	<pre>y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67 75 k (m/d) t=13</pre>	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4 52.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2 101.5	1 700 B/M 16 35 -2 12 48.5 48.5 time 6 11 15 22 35 41 48 61 68 80 92	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1 110.3	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97 112	1evel 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.4 47.5	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4 88.2	
6	y-coord 400 vegetat length (cm) 17 width (cm) 16 depth (cm) 32 hsur-htub 0 wat.lev(cm) -2 D perm.(cm) 15 H0 (cm) 53 Drawdown(cm)49.9 time 0 5 9 13 18 22 25 29 36 42 50 61 67 75	level 49.9 50.3 50.5 50.8 51.2 51.4 51.5 51.7 51.9 52.1 52.3 52.4 52.5	K (m/d) 131.7 88.1 148.3 86.3 118.8 176.8 70.4 92.1 126.0 114.6 106.3 113.2 101.5	1 700 B/M 16 35 -2 12 48.5 48.5 time 6 11 15 22 35 41 48 61 68 80 92	level 1 45.9 46.1 46.3 46.5 46.7 46.9 47 47.1 47.2 47.3 47.4 47.5 47.6 47.7	K (m/d) 178.1 227.1 304.5 188.6 207.1 127.4 134.9 123.1 153.8 142.2 154.7 99.1 110.3	j 600 M 19 16 31 -12 10 48 45.4 time 5 11 16 20 28 35 42 52 62 71 78 85 97 112	1evel 45.4 45.3 45.7 45.9 46 46.2 46.4 46.6 46.8 47.1 47.1 47.2 47.3 47.4 47.5	-56.0 213.6 138.6 90.4 99.2 126.0 142.3 114.8 136.1 83.5 120.1 136.5 92.4 88.2	

AUGERHOLE METHOD

:

τ.,

	•		· .					
1		• 1	, ,					
x-coord	1	· .	r.		i			
y-coord	-200		600		600			. •
length	16 [.]		17		19	•	۰ ^۲	
width	16		16		18			
watdepth	19	•	25	τ. 	24		· · · · · ·	•
wat.level	-2		-2	•	-2		· · · ·	- N.
hsur-htub	6		. – 4		, -2			
W'		· .			-	· _		
	31.8		29.2	·· ,	2	•	•	
Drawdown	46.2		48.8		15.8			· •
C (graf)	160		160		ົຸ160			•
	time	level k (m	/d) time	level k (m/d) time	level]	k (m/d)	<i>'</i> .
	0	46.2	0	48.8	<u>,</u> 0	15.8	•	
•	2.5	45 1.	28 2.5	48 0.85		15.7	0.11	
1	* 5	45.5 · -0.		47.6 0.43		15.6	0.11	
	7.5		21 7.5	47.3 0.32		15.5	0.11	• :
,	10		11 10	47 0.32		15.4		
	12.5						0.11	·
				46.7 0.32		15.3	0.11	
• • •	15	44.9 0.	11 15	46.4 0.32	15	15.2	0.11	
	- 1-			1				÷ .*
k (m/d) t	:=5-15	• 0.	16 t=5-15	0.32	t=0-15		0.11	·
• • •			· · ·					· ·
		• •		• •	ъ.		• •	
••			, ·	•• ·				
x-coord	1							
y-coord	1400						-	
length	18	• • • •	· . •			-		•
width	17	•					- <u> </u>	
watdepth.	23	· · · .	· .			•		•
wat.level	-2		· · · · · ·			•	,	
hsur-htub	4		i.				1 k. 1	
W'	~	۰.						
	2		* .			,	1. <u>1.</u>	÷ 1
Drawdown	18.9	,		1				•
C (graf)	160		•	-				۰.
•	time	level k (m	/d)					
	0.	18.9					`.	
	2.5	18 0.	96				•	•
· · · ·	5	_	53	A				•
· · · ·	7.5	17.2 0.			, •.		- -	•
	10		43					
•	12.5	16.5 0.		· · · ·	*			
	16.7							.+
•	15	16.2 0.	32		. •			
1. (m (1))		_	.	• • • • • • •	•			
k (m/d) t	:=5-15	0.	35 '					
			•	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
				•	•			

.69

·5,∓

APPENDIX 10.

DATA AND CALCULATIONS OF THE ACROTELM TRANSMISSIVITY/PERMEABILITY TESTS AT 5-6-1991

GUINNESS METHOD

bergfact.	0.5			•	
x-coord		~			
	1	P COO	0.	n m	
y-coord	300	600	₹600 °	600	
vegetation	moss	moss	moss	moss	
length (cm)	20	20	.19	. 22	
width (cm)	18	19	18 - 1	20	
depth (cm)	. 40	· 40	32	39	
r eff.(m)	0.11	0.12	0.11	0.13	
wat.lev(cm) 🎽	-9	-14	-13	-11	
hsur-htub	0	1	0	0	
tubes	1+1+12	. 1+1+12	1+1+12	1+1+12	•
Q (1/s)	0.025	0.025	0.025	0.025	+
HO (cm)	57.0	49.5	78.0	87.0	
Hc (cm)	56.1 •	47.7	75.9	.85.5	. '
time (s)	112	255	278	285	<i>.</i>
s(w) (m) 👘	0.009	0.018	0.021	0.015	
n(form.)	26.3	28.8	30.0	33.9	
n	7.7	8.1	8.3.	8.9	,
T (m/dav)	77	40	34.	50	• •

PIT BAILING METOD WITH THE THIEM EQUATION

	TIT DAILING METO	D WIIN INE INI	EU EQUAT	ION			
	T- an and	•	-	a jerçie s			
	x-coord	1	1		1		
	y-coord 90	0	800	the second se	600		• ·
	vegetat • mos		moss	•	moss		-
	length (cm) 10	6 ⁴	18		18		
	width (cm) 10	6	17		16		· · · · · · · · · · · · · · · · · · ·
	depth (cm) 2	8 ,	37	·	31		
	hsur-htub (0	-2	• . •	-2		
	wat.lev(cm) -17.	5	-22.4		-8.3		
	D perm.(cm) 4		45		20	· · · · ·	
	HO (cm) 20.		33.3			- T	1 - 1 - 1
	Drawdown(cm) 18.		29	਼ਿਤ ਵਿੱਚ ਕਿ	51.5		÷. •
					46.8		
		e level K (m/d	time. le	evel K (m/d			
		518.4	3	_29	1 A	5-8	
	10.			9.3 38.7	6	47 35.5	. : .
	10		9 2	9.5 135.0	11 4	7.2 44.1	
	. 18.	5 19.5 148.3	,15 ·	30 64.1	14 4'	7.5 117.1	
	3(0 19.8 64.0	•	0.2 27.2		7.7 61.1	
	3	7 19.9 39.4		0.4 34.7	21 .4	• • • • •	
.*		0 20 104 7		0.6 46.4	26	48 26.2	
	5.	•					
	· · · · · ·			0.7 19.2		3.2 91.9	
	O •	4 20.2 13.3		0.8 33.3		3.4 58.2	
				0.9 51,8		3.6 77.1 ···	
			47 :	31 15.4	47 4	3.8 36.5	· · · · · ·
			55 3	1.1 14.1	51.5	49 78.3	
			57 - 3	1.2 58.9	57 4	9.2 69.0	· · · · · · · · · · · · · · · · · · ·
•			64 3			9.4 58.9	4.0.
. '			*	1.4 21.6		9.5 53.9	
			78 3	•		9.7 47.6	
				1.6 14.4	•	9.8 62.7	
		· · · · · · · · · · · · · · · · · · ·					
	K = (m/d) + -10		$103 \cdot 3$	2°		9.9 29.5	
	K gem (m/d) t=18	.J-t=84 50.9	t=15-103	27.3	t=29-91	56.3	
				*.**	د.		
ı	x-coord	1 · · · · · · · · · · · · · · · · · · ·	1	State of the second sec	n		
•:	y-coord 500	and the second	200		·· 600 [.]	· ·- ·	
	vegetat moss	S i i i i i i i i i i i i i i i i i i i	MOSS		moss .		-
	length (cm) 1	7	19	•	20	· • • • • • • •	
	width (cm)	6	15		19		· . •
	depth (cm) 3:		38	* **	40		
	hsur-htub -		0		-2	د. با منه م	
	wat.lev(cm) -1				· ·		
			-11.5		-11.2		X
	D perm.(cm) 20		40		15		
-	HO (cm) 32.4		53.5		89.5		
ę.	Drawdown(cm) 28.6		49.5	· ·	85.4		
	time	e level K (m/d	l time le	vel K (m/d	time le	vel K (m/d.	1 - Lee 3
		0 28.6	1 4			5.4	· · · ·
	•			9.8 29.5		5.7 123.3	
	1		• 11	50 31.1		5.8 111.1	
	20		15.5			86 85.9	4.
	20		19-15			6.3 108.7	
		4 29.6 64.6		0.6 37.1		6.5 75.5	
	41			0.8 39.7	58 8	6.8 67.6	•
	49	9 30 73.4	34	51 24.4	70	87 71.4	
	62	2 30.2 48.7	43 5	1.2 20.6		7.2 53.6	<u>.</u>
	7			1.4 28.9		7.4 65.1	··· : •
•	88					7.6, 52.9	
	9			1.8 24.8			
•				0	*	7.8 57.9	
•	K gem (m/d) t=26-	-05 56 0	83	52 20.0	165	88 55.9	
	. yom (m/u) t=20-	-20 20.8	t=27-83	23.9	t=30-165	62.5	
		44 1	· •		· • •	·	
	•						

귀

÷.,•

<u>, '.</u>												-		. •		19 A.
	نې وله کې کې وله کې د					-		4	<u>د</u>							۔ اچ د
	PIT BAILING	MET	HOD WIT	гн рі	EZOME	TER	METHO	D EQU	JATIC	DN (1)		· ·	- 1		
يوني. م		·						7	т. 			. 3	-		۰ بر ۲	1.1
		•	t mil									× 2				·
~			in girt series The series		,				- ak, .,	~ .			A	22 5	. y e - i	
	x-coord y-coord	1100			1 700		ر به سر بر معرف	400				100.	1			
	- · · · · · · · · · · · · · · · · · · ·	moss			moss			- 400 - moss		•		moss			and the second	
	length (cm)			,	16			17		۰	• •	່າດັ				
	width (cm)	17		•.	16			16		•		[*] 18	, * ·		مگر	т. Д
	depth (cm)	33		*	35			32	-			37		· · · ·		1.14
	hsur-htub		an an	î	5			,)***			, 6		3) : 		₹. . .
	wat.lev(cm)		•		-14			-11				-8				- 14
	D perm (cm)				10		ించి	15	3			15	¥۴.		.*	•.
	HO (cm)	38.0	~ 2 . 5		39.1		· · · · · · · · · · · · · · · · · · ·	57.3		•	• •	58.0	-1-4 		* \$ <u>*</u> * *	1
	Drawdown r eff (cm)	34.6			34.9 9.6	-	- 1 20	51.0			3	54.5			,	
	Lc/r	1.5	• •		2.2		×.,.	9.9 ~2.1			÷.	2.5	-	· · · ,	77 A.	1
	Ap/r	14.5			16:0			15.5			'a	16.0				
	Ap	148	* /		154		Aer'	153				182	4			
	. K. K.	time	level	K	time	lev	el K	time		vel	ĸ	time	leve	el ·	K	
ه.			34.6		0	34.	9,		51.				54.			
	<u>`</u>		34.9			35.			51.		5.1		54	×.		
•	· · ·		35.0			35.	·		5 51.		3.3		54.		~	
				4.5			2 1.4	~~			3.6		54.9			*). K
	**		35.2 35.3	4.6 4.4	110 146			51	7 51.		3.9 3.4		55.		, <u>1</u>	
			35.4	4.4		•	5 - 1.4		1-51.				55.2		21 A.	÷.9
	• •		35.5	4.4					51.		3.0		55.			
	•		35:6	4.5	.e			· •	5 51		2.8		55.4			, ^e
۲	*** *		35.7					104	1.52.	0	2.9	128			૽ૼ૽૽ઙૢૻ	. * . * 413.
			35.8	4.5					· ·		•		"5 <u>5</u> .(. 8	· ~,
	· * ·	202	35,9	4.6	,			<i>z</i>					\$55.'	· .	. 8 .	·
. •	- · · ·			•	•			· \$					55.0		.8:	
							• 5-		* 	<u>ئ</u> ر ،	*		55.9		· · ·	· A
			÷.,	2		. <u>.</u>		بر ا		• ;	,• ·	434	56.0	J 4	• .7 ```	
•	K (m/d)	t=0-2	202	4.5	t=0-1	81	1.4	_t=11	-104	Ĺ	3.2	t=12	8-23	2 4	्ड 	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							3		с 14.		e di se		4 -
														· .	•	

# PIT BAILING METHOD WITH PIEZOMETER METHOD EQUATION (2)

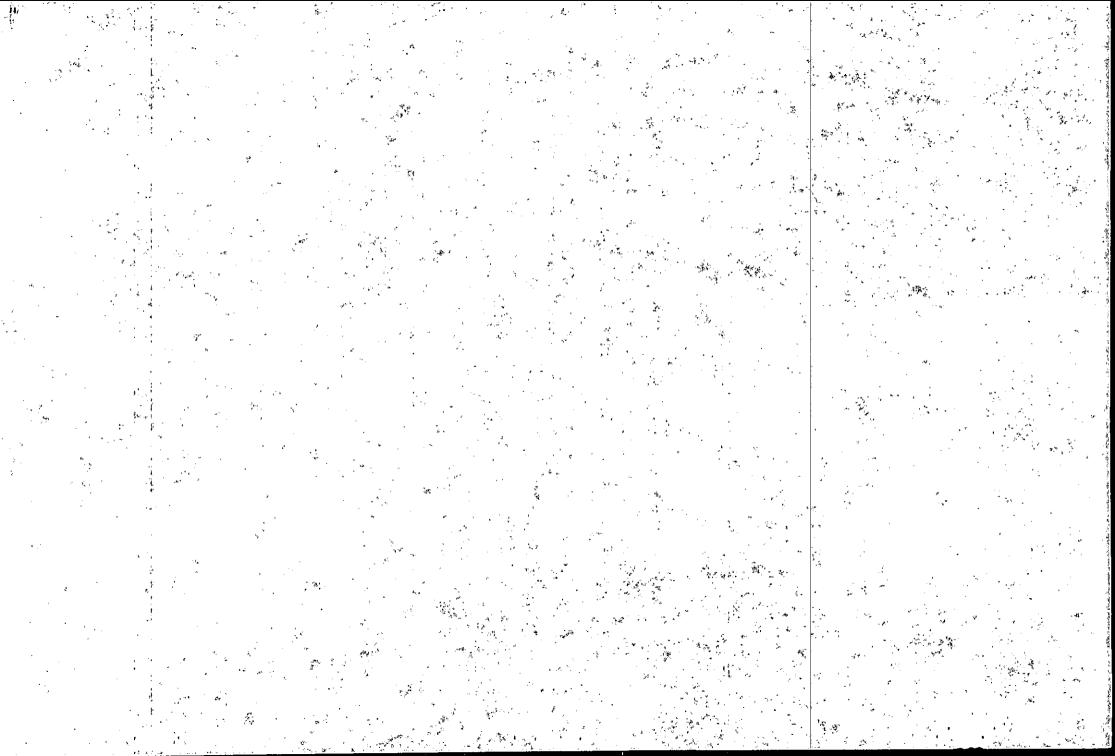
			×. ,	<u>,                                     </u>
x-coord 1	1	k		
y-coord	-100	600		
vegetat b asp/moss		moss		
flength (cm) 17	16	20		
width (cm) 16	15	15		4. 60 ¹ . 1
depth (cm) 39	41	38		æ
hsur-htub 👍 🌾 1	2	0		ر ۲
wat.lev(cm) =12	-9	-9		* *
D perm (cm) 10	10	, 0		
HO (cm) 38.2	37.5	90.0		
Drawdown 33.7*		86.2%		ħ
r eff (cm) 9.9.	9.3	10.5		م
Lc/r 2.7	3.5	2.8		
Ap/r 16.0	17:0	16.0		
Ap 158	158	168		5.
, time level K	time level K	time level K	A CALL AND A	
0_33 <b>.</b> 7	0 32.0	2 86.2		
42 33.9 1.8	24:32.4 4.7	17 86.5 8.6	نى الحريق (١٩٩٠ مى مارى المراجع المراجع المراجع المراجع	
90.34.0 1.3	34 32 5 4.2	29 86 6 6.8		
104 34:1 1.5	41 32.6 4.2	37 86 7. 6.8		
160 34 2 1.2	51 32 7 4.0	42 86.8 7.3		
204 34 3 1.2	59 32 8 4.0	54 86.9 6.7	من م	
251 34.4. 1.1	72 32.9 3.7	61 87.0 6.9		میں ا م
288.34.5 1.1	80 33.0 3.7	68 87.1.7.1		÷
n standing participants in the standing of the Standing of the standing of the	91 33 1 3.6	80 87.2 6.8		
	101 33.2 0.0.	91 87.3 6.7		- -
	114 33.3 3.5	98 87.4 6.9		ي و ^{در} سرس بن است
	127.33.4 3.4	108 87.5 6.9		
	138 33.5 3.4	117 87.6 7.0		
		126 87.7 7.1		
	<b>164</b> 33.7 3.3	134-87.8 7.3		
	181 33.9 3.5			61.35° 2.33
	203 34.0 3.3	156 88.0 7.3		
	232 34 2 3.3		the second s	
	246 34.3 3.3			ka di a
	260 34.4 3.3	an and a second		- 19 m
	್ಯಾಂಗ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾ ಸಂಕ್ಷಾಣಗಳು ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್			Que l'

K gem (m/d)t=42-288 1.2 t=101-260 3.4 t=17-156 7.

# AUGERHOLE METHOD

			•		· .*		•				
	x-coord	1		ý .	» ŕ	a, <b>`-</b>			, d		
	y-coord _e	400			600				600	,	
	length -	17.		· • '	1.7				20		
	width	16		• • •	16	4			17		
	depth .	32	,	•	· .?	, 			28		
	wat.level	-11		• .	26				26		
	hsur-htub	0		· · ·	29.2				0		
	W'			3			•				
	HO	57.3			16.2	- · · ·	•		30.8		
ŗ	drawdown	51			9.8	۰. ۲			19	-	•
	C (graf)	160	:	54 - C	160	i e t			160		
	· · · ·	time	level	k(m/d)	time	level	k(m/d)	time		k(m/d)	
	*	0	51			⁴ .9 .8		0	` 19		۰.
	-	11	51.2	2.91	3.2	10	0.17	1.2	19.3	0.67	
		26	51.3	1.07	7.3	10.1	0.07	2.3	19.5	0.48	
		32	51.4	2.67	11.4	10.2	0.07	.4.7	19.8	0.33	
		37	51.5	3.20		ي محرب اليان. ي محرب اليان		5.8	20	0.48	
		51	51.6	1,14	· ·			7.1	20.2	0.41	
	: 1	64.	51.7	1.23	· ·	-		8.3	20.3	0.22	
		79	51.8	1.07	2	27		9.2	20.4	0.30	
		95	51.9	1.00	<u>,</u>	· -		10.8	20.5	0.17	
	••	104	52	1.78							•
					·						

k (m/d)


t=37-104 1.24 t=0-11.4

0.10 t=1-11 0.34

#### THE VON POST AND GRANLUND HUMIFICATION SCALE

H 1 Completely unhumified plant remains, from which by hand only almost colourless water can be squeezed.

- H 2 Almost unhumified plant remains; the squeeze water is light brown and almost clear.
- H 3. Very poorly humified plant remains; the squeeze water is cloudy and brown.
   H 4 Poorly humified plant remains; peaty substance does not escape from between the fingers by squeezing.
- H 5 Moderately humified plant remains; the structure is however still clearly visible; the squeeze water is dark brown and very cloudy, while some peat escapes between the fingers.
- escapes between the fingers.
  H 6 Fairly highly humified plant remains; the structure (texture) is unclear.
  About a third part of the peat escapes through the fingers.
  The part remaining in the hand has a more clear plant structure than the part that was squeezed out.
- H 7 Highly humified plant remains; about half of the material escapes when squeezed. The water which may escape is dark brown in colour.
- H 8 Very highly humified plant remains; two-thirths escapes through the fingers. The remainder consists mainly of resistant bits of roots, wood etc.
- H 9 Almost completely humified plant remains; almost all the peat escapes through the fingers. Structure is almost absent. H10 Totally humified plant remains:
  - 0 Totally humified plant remains; amorphous peat; all the peat escapes the fingers without any water being squeezed out.



	APPENDIX	12	DATA OF	THE FIR	ST ACROTI	ELM MAPPI	NG	د میں اور میں تعدید	and the second
<b>.</b>		<b>\$</b> .	يند مي الم حصور م			,	ч. <u>с</u>	ر مەرە مەرە مەرە	т.,
•	COORD V	LAY1 H	COL1	LAY2 H	COL2	LAY3 H	<b>ĊOL</b> 3	LAY4 H	COL4
	H1000 M	10-30 7	7.5-2/3	30-50 5	17.5-4/6	50-70 6;	5-2/4	70-1005	5-3/6
	H1100 B	5-30 6	5-2/4	30-40 5	-5-4/6	40-50 4	7.5-2/3	50-1005	5-3/4
	H1200 M	5-20 6	5-2/2	20-30 5	7.5-3/4	30-50 4	7.5-4/6	50-1004	7.5-3/6
	H1400 M	10-30 6	5-2/3	30-50 5	7.5-5/8	50-1004		· ·	
			7.5-5/8 5-3/3	5-20 7 15=40 7	2 5 2 /2	20-30 80	7.3-3/8		5-3/2 2.5-3/3
1	10100	0-10 7	5-2/4	10-20 7	10-3/3	20-30 4	2.5-3/4	30-55 6	2.5-3/3
	10200	20-50 5	5-3/2	50-70 4	5-4/8	70-1003	7.5-5/8	0000	
	10200 H	2-32 0	· ⊃−2/2 ·	35-50 4	_5–,4/8 ⊡⊸	50-75.4	5-4/8	75-1005	5-3/4
	10400 M	5-50 6	5-3/3	50-55 3	7.5-5/8	55-80 5	5-3/3	80-1004	5-5/8
	10500 M.	0-10 4	10-6/6 5-2/2	10~40 5	7.5-6/8	40-50 5	5-3/2	50-80.5	5-3/3
	10700	0-30 6	5-2/2 5-2/4	30-50 4	7.5-4/6	·50-65 5	7.5-5/6	65-1004	7.5-5/8
	I0800 H	0-25 6	5-2/4	25-50 4	5-2/2	50-70 5	5-4/8	70-1005	<b>F</b> -0/6
		no dri	- 27-2	20 00 <del>1</del>	5 3/3		J-4/0	vőrooa	3-3/6
	I1000 M	5-30 6	2.5-2/4	30-1005	5-3/3				
·	I1100 M	10-30 7	5-2/4	30-55 6	5-4/6	55-85 -5	5-2/3	85-1005	5-4/6
	I1200 M	5-15 6	5-3/3	15=25 6	2.5-2/3	25-1004		•	
	11300 M	5-25 6	5~2/3	25-75 4	5-4/6	75-85 5	5-4/6	85-1004	2.5-3/4
	J0100 B	0-20 0 5-25 6	5-2/2	20-35 5	5-4/6	35-50 4	7.5-5/6	50-75 4	5-3/6
	J0200 M	0-10 3	10-6/6	23-30.3	5-3/4	50-1005 65-85 4		85-1005	5-2/2
	J0300 🖓	0-10 5	5~4/6	10-50 6	5-3/4	50-1005	5-4/8	85-1005	5-5/5
	J0400 B	10-30 6	5-3/3	30-70 7	7 5-4/6	70-1007	5-3/6	- <b>-</b>	<b>*</b> *
	J0500 B	0-10 3	10-6/4	10-40 6	5-2/3	40-50 4	5-5/8	50-75 4	2.5-3/3
	J0600 M	10-206	5-3/2	20-40 5	5-3/3	40-55 4		55 <del>-</del> 80 ĉ	
	J0800 M	0-10 /4 15-20 6	-7.5-4/4	10-20 6	5-3/3	20-50 5		50-75 5	5-3/6
	J0900 M		10-6/6·⊁	20-40 6	5-3/4 7.5-4/6	40-50 5	5-3/3 5-2/4	50-1006 50-1005	5-2/4
	J1000 B	5-15 6	5-2/3	15-1005	5-3/4	30-30-3	1.5-3/4	20-1002	5-3/6
	J1100 M	10-20 6	2.5-2/4	20-80 5	5-3/6	80-1006	2.5-3/4		s. 
	J1200 C	0-10 5	2.5-2/3	10-75 6	2.5-2/3	75-1006	2.5-2/4		
	J1300 H	5-10.6	5-2/2	10-40 5	5-3/4	40-75 4		75-85 5	5-3/6
	КОООО Н КО1ОО В	0-10 5 5-25 6	2.5-2/2	10-40 6	☆5-2/4 2 5 7 /4	40-1005	5-3/3		
	К0200 Н	5-25 `6	2.5-2/4	25-40.5	4.5-2/4	45-60 5 40-60 5		60-1006 60-1005	
•	K0300	0-20 6	75-2/4 *	20-45 5	2.5-3/3	45-55 6	5-4/6	55-70 6	
	K0400 H	0~50 6	2.5-3/3	.50-1005.	2.5-3/3			00 10 0	4.5 2/4
	KO500 M	0~5′3	10-6/6	5-15 6	2.5-2/4	15-25 4	5-3/6	25-40 6	5~2/4
	K0600 B	10-20 7	5-3/4	20-40 6		40-50 5	5-3/6	50-1005	2.5-2/4
	K0800 M	0-10 2	5-2/3	35-805 10-206	5-3/6	80-1005	°5-2/4 ]		
	K0900 M	15-25 6	5-2/4	25-45 5		45-1005	5-4/8 °	40-50 Š	5-3/4
	K1000 C .	5-15 6	5-2/3	15-1005	5-2/4	43-1003	5-5/4 **	-	
	K1100 B	10-20 6	.5-1.7/1	20-40 6	5-2/3	40-55 5	5-3/3	55-80 6	5-2/3
	K1200 H	15-40 6	5-2/3	40-1005	2.5-3/4		193		
	K1300 M K1400 M		5-2/2			30-1005	2.5-2/4		44
	L-100 M		10-5/6 7.5-4/6		7.5-2/3		E DUC		.2
	L-200 M		7.5~2/2	30-90 5	5-3/4	80-1006 90-1006		*	
	L0000 M		10-2/3	10-25 6				35 <del>,</del> 50 6	5-2/4
	L0100 M	0-15 4	10-4/6	15-50 6	7.5-4/3	50-75 5	5-3/5	75-90 6	5-3/4
	L0200 M	0-20 ~ 4	10-4/6	20-40 4	10-4/6	40-50 6	2.5-2/3	50-80 5	5-3/6
	T0300 W (	0-12 3	10-5/8	15-40 3	10-5/8	40-45 7	7.5-3/4	45-80 5	2.5-3/4
	L0400 M L0500 M	0-12 2	7.5-4/6 7.5-3/4	15-50 6	5-3/6	50-1005	2.5 - 2/4		
	L0600 M	0-15 3	10-5/6	15-30 6	2.5-3/3	30-45 5	2.5-3/6	80-1006-	2.5-3/3
	L0700 B	0-10 3	10-4/8	10-30 6	2.5-3/3	30-45 6	2.5-2/4	45-50 4	4.3-4/4 5-3/6
	LOBOO M	0-20 3	10-5/6	20-45 4	10-4/4	45-1005	5-3/6	10 00 1	
	L0900 M	0-40 3	10-4/6	40-50 6	5-2/3	50-90 5	5-2/3	90-1004	5-4/6
		0-15 4 0-15 2	7.5-4/3	15-30 6	2.5-2/4	30-50 6	5-3/6	50-60 5	7.5-5/6
•		0-12 3	10-5/6 2.5-2/2	10-35 6	5-3/4	35-60 5	5-6/8	60-75 5	2.5-2/4
		20-35 A	2.3-2/2	35-80 5	2.J-3/4 5-3/6	30-1005	( 5-274		
			5-3/3	35-80 5	5-3/6		2.5-3/4		4 2 ²
			•			20 1000	2.5 5/4		

a da se ta

```
LAY5 H COL5
                             LAY6 H COL6 LAY7 H COL7
                                                               LAYS H COLS
  H1000<sup>®</sup>
  . H1100 -
4
  • H1200
   H1300
 🗧 H1400 ;
            50-1004-5-4/6
   10000
            55-80 4-7.5-6/8 80-1003 5-4/8
   - I0100
   10200
   10300
   Ï040Ò
   10500-
           -80-1006-5-3/4-
  10600
                                               6.9
   10700
   I0800,
  © 10900
   11000
   11100
   11200
   I1300/
            75-1005 2.5-3/3.
   J0000
   J0100
            J0200
   J0300
   J0400
          75-1005-5-2/3
   J0500
   J0600
           80-1004.5-3/6
           75-1006 5-3/6
   J0700 -
   J0800
   J0900
   J1000
   J1100
   J1200
   J1300 85-1005-5-3/6
   K0000.
           ÷. 1-
  _K0100
   K0200
           70-1005 5-4/8
   K0300
   K0400
            40-50 5 5-3/3
                            50-1005 5-3/3,
   K0500
   K0600
                     50-1005 5-4/8
            S. A.
   K0700
   K0800
   K0900
           K1000
   K1100
            80-1005 5-3/3
   K1200
   K1300
   K1400
  L-100
   L-200
   L0000 50-1005 2,5-3/4-
         90-1007.5-3/4
  * L0100
  L0200
   L0200 80-1006 2.5-2/4
L0300 80-1007 2.5-3/4
   L0400
  LO500
            55-75 4 2.5-2/4 75-90 6 7.5-4/6 90-1006 2.5-2/4
  6 L0600
   L0700
            50-60 6 2.5-3/4 60-70 5 2.5-3/4 70-80 4 2.5-3/4 80-1007 2.5-3/4
  L0800.
   L0900,"
          . 60-75 5 2.5-3/4 75-85 4 2.5+3/6 85+1006 2.5-3/3
-75-80 6 2.5-2/4 80-85-5 2.5-2/4 85+1006 2.5-2/4
   L1000
   L1100
  L1300. 🛫
   L1400
   L1200,
```

과귀

	`¢			. •	
· · · · · · · · · · · · · · · · · · ·	*	LAY9 H COL9	LAY10 H COL10	LAY_X1H COL_X1	LAY_X2H COL_X2
	1000			0-10 5	
H	1100 1200			0-5 4 10-4/4	
н	1300	•		0-5 3 10-6/6 0-10 5 5-2/3	t niter a state of the second se
H	1400			~ ~ 4/5	
I	0000 0100				
I	0200	•		0-20 7 5-3/2	
	0300 0400	•		0-5 4 10-6/4 0-5 3 5-4/6	
i i i i i i i i i i i i i i i i i i i	0500]				
	0600 0700				
1	0800	• F• ~	x	~~ >	
	0900 1000		·. *	0-5 5	4
× I	1100		· · · ·	0-10 4	
	1200 1300	•	· .	0-5 5 10-6/6	
• J•	0000	· · · · · ·	:	0-5 5 5-2/3	
	0100 0200	•	-	0-5 5 2.5-3/2	and the second s
J	0300			· · · · ·	
	0400 0500			0-10 4 10-5/8	
- J	0600	4		0-5 4 10-6/4	5-10 5 7.5-3/2
J	0700 0800 [,]	•	, <u>,</u>		24
J	0900		5 ×	0-5 3 7.5-5/6	5-15 5 7.5-2/3
<b>J</b>	1000 · · · · · · · · · · · · · · · · · ·	*3		0-5 3 10-5/4	
) J	1200		· • •	0-10 5 7.5-3/3	and the second
J	1300 0000	÷		0-5 5-2/2	ر ۲۹ از این این ۱۹۹۵ م. موجود می می این می این می این می می م می می م
ĸ	0100	• *		0-5 5 5-2/3	
ĸ	0200	•		0-5- 3 10-4/6	
ĸ	0300 0400	· · ·	. ··	n da	
ĸ	0500 0600	. · ·		-	
ĸ	0700 -		*	0-10 4 5-3/4 0-5 5 5-2/3	
K K	0800 0900	• .			
K K	1000	.ж.		0-15 5 7.5-3/4 0-5 3:10-5/4	4 P 2 4
ĸ	1100 1200	- • • • •	· · · · · · · · · · · · · · · · · · ·	0-10 3 10-6/6	
K	1300	•		0-15 5 5-2/3 0-5 4 7.5-4/6	
ĸ	1400		•		tan an a
L	-100 -200		•	10-30 6 ² 7.5-3/3 0-5 4 7.5-4/4	
L	0000	```		/ -	с нар Е у Ми
L	0100 0200	• •		ž	
$\mathbf{L}_{i}$	0300	-		A* ,	
, L		ar. La	·	0-5 5 7.5-3/4	5-20 7 7 5-3/2
L	0600		1911 - 1912 - 1913 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 19		
L	0700 0800	· · · ·		·	
L	0900			· · · · · · · · · · · · · · · · · · ·	с
L I.	1000 1100	<b>8</b>		,	and a second
L L	1300		· · · · ·	 	· 20.
4 L. T.	1400 1200	• • • •		0-5 4 10-7/8 0-5 2 10-7/8	5-20 7 2.5-3/2 5-20 3 10-6/8
Ľ				J J Z 10-7/8	ο 70 ο 10−0/8 
		,ì		« *	ب. ش
			1		
		•	• •		
4		``````````````````````````````````````	r		78

•

÷

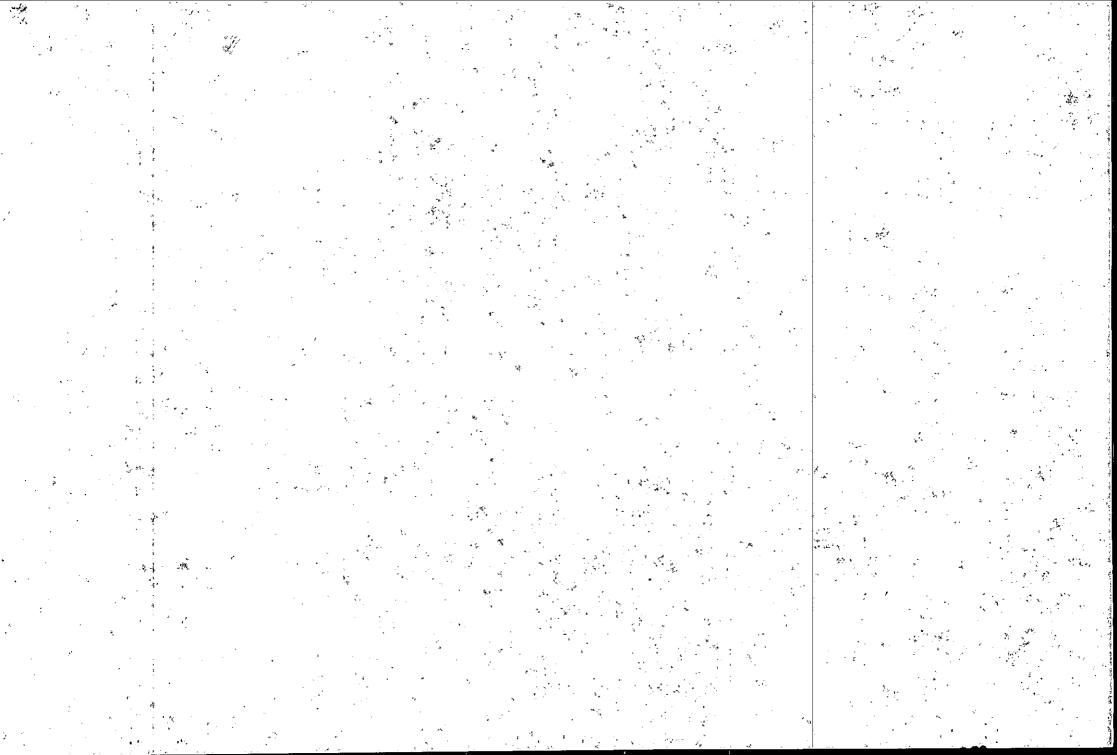
,	, ·· -		, č. '					•							_ · · ·
1	COORD	V	LAY1	н	COL1	LAY2	H	COL2	LAYS	н	COL3	LAY4	H	COL4	1. s
•	· · · · · ·		· · ·		· · · · · ·		· "·		· •	•••	- · ·			na shi ant	
	M0000	M M	0 - 10	3	7.5-5/8	10-30	°6,	5-3/4	30-50	5	5-2/4	50-80	4	5-4/8	
			0-15		7:5-5/8	15-20	6	5-2/3	20-30	6	5-4/4	30-45	<b>4</b> ;	5-4/8	- 1- e
	M0200-	'.м	0-10		7.5-2/3	10-50	• 6 •	5-3/4			5-3/4	55-65	7.	5-3/4	1.14
	M0300			3	10-6/6 7.5-6/8	10-30	• 4	10-5/6	30-50	6	5-2/4 -				
	M0400	M	10-50	.6.	5-3/6	50-50	. 5	5-2/6			5-3/4 7.5-4/4	50-65	ວ ຮຸ	5-3/4 ÷	<u></u>
. •	M0500	M	0-5	5	10-6/6	15~30	5	5-3/3	30-50	5.	5-3/6	50-100			
	M0600		0=5	4	10-3/2	5-15	3.	10-676	25-35	5	5-374	35-50	67	5-3/3	· , ·
÷.	M07.00	М	0-10	3.	10-6/8	10-25	4.	7.5-4/4	25-35	6	5-2/4	35-50	4	7.5-5/8	đ, 1
	NO900-	*.4.×	0-10	З.	1.5-5/8	20-35	- 5	5-4/6	35-50	5	7.5-4/4	50~100	6	5-3/6	
ويوني ال	M0900	H	0-15	3.	10=7/6	15-50	6	7.5-4/4	50-60	7	7.5-4/4	.60-100	5	5-3/6	
	m1000	° <b>F</b> L	0-20	З.	7.5-5/8	30-45	5	7.5-3/4	45-50	4	5-4/8 2	50-65	4	5-4/8	
	M1200	н.	10-25	.6 	5-3/3	25-50	5	5-2/4	50-60	4	5-4/8	60-70	5	5-3/6	9 
•	M1200		0-15	6	7.5-3/3	15-20	6	7.5-2/2	20-35	6	5-3/2	35-50	5,	5-3/2	۲.
	M1400		0-5	2	5-2/3 10-5/6	5-15	<u>,</u> 6	5-3/3	15-30	6	5-2/4 🖉	30-50	5,-	5-3/4	
4 de-	M1500	 	0-20	Å.	5-2/4	100-35	່ວ . ເ	7.5-2/3		<i>.</i> ,	5 0 /0			2.5-2/3	e di
· . ·	N-100	M	10-15%	7	7.5-2/3	15-25	٦Q.	2.3-4/4	30-40	4	5-3/3	45-50 35-50			· · · · ·
يە ^ي ە.	N0000	M	5-20	7	5-3/2	20-50	ъ.	2.5 - 2/4	50-100	5	2 5-212	30-30	0	2-3/3	÷
	N0100	M.	5-15	4	7.5-5/8	15-30	`6́	5-2/3	30-35	5	5-3/6	35-50	ิล์	2.5-2/4	<u>د</u>
	M0200.		0-20	3	7.5-6/8	20-40	- <b>6</b> `	5-373	40-50	5	7.5-3/4	50-100	5	5-3/6	
. °'	M0300.	п	10 - 20	6	5-2/4	20-40	б.	5-3/4	40-50	5.	7.5-4/4	50-60	5	7 5-4/4	
	N0400	· * :	0-10	6	5-2/2	10-20	4	5-4/8	20-50	6	5-4/6	-50-85	4	2.5-4/8	
• •	N0500,	Μ	0-20	3	7.5-5/8	20-50	6	5-3/4	°50-70	6	5-3/4	70-100	5.	5-3/6	<u>,</u>
	NOSOO	ų.	0-15	3	10-6/6	15-30	6	5-3/3	30-45	6	5-4/2-				
,ar furi tytt	NOROO		0-10	-5 - 4 -	7.5-2/3	10-20	.6	7.5-3/4	20-50	6	5-3/3	50-65	<b>6</b> 1	2.5-3/3	- * *
÷ .	NOODO	.,	0-10-2		7.5-4/6 5-3/6	10-50	4	5-3/6			5-3/6		4. 		23 - 24 -
1. 1	N1000		0-20	5.	7 5-2/2	20-40	- O-	5-2/3	20-35	6	7.5-4/4	35-50	6	5-2/4	مربع المراجع
	N1100 ⁷	0	0-10	2	10-5/8	10-25	- 7	7 5-2/2	25-50	Ē.	5-2/3	50-65	ວິ ຮ່	2.5-3/3	1. y
	N1200	s#	0-10	7	5-2/2	10-20	6	5-3/2	20-30	4	5-5/8	30-50			Т. С. С. А.
L .	00610	- "H	0-20	-6⊡	-5-373 ⊃	20-40	. 5.1	5-4/8	40-50	6	5-271	50-85			
14	0-100	۰U÷	0,-20	7	7.5-2/2	20-60	- 5	5-2/2	60 - 100	)4	5-5/8				
	00000.	H	0-15	5.	5-3/3	15-25	-7	7.5-3/4	25-40	5	5-2/4	40-50	4	5-3/6	Ř
	OOTOO.	<u> </u>	0-30 .	<b>_</b> {=	5-4/4.5	-30-50	5.	5-2/4	50-60	4	5-5/8 .	-60-70	4	7.5-4/4	
	00200	: М	0-15	3	7.5-5/8	15-30	5	7.5-3/4	30-50	5	7.5-4/4	.50 <b>-</b> 70	7	5-3/6	4. j 🗄
	00300	п 	0-10	2	7.5-5/6	15-40	_4	7.5-4/6	40-50	5	7.5-4/4	50-100	5	7.5-4/4	
	00500	M	0-10	4	7.5-3/4	15-40	20- E	7.5-3/2	15-20	4	7.5-4/4	20-35	6	7.5-3/4	- در این مر سن ا مرکز میکند.
· ·	00600	M	0-20	.2	5-1.7/1 10-6/8	20-50	ີ່	- 373/4 7 5-4/4	40-50	0 7	3~2/4 7 5-3/4	50-100	2	2.5-2/4	
- 3	00700	M	0-5	3	10~6/6	20-30	ु द	10-3/3	15-50	6	7 5-3/4	50-50	2	5-3/6 7.5-3/4	
<b>.</b>	00800	M		้เริ	10-5/8	10-15	5	7:5-4/4	15-70	7	7 5-3/4	. 70-100	5	5-4/9	
<b>.</b>	00900	M	0-15	3	10-6/6	15-30	7	2.5-2/2	30-70	6	5-3/3	70-100	5	5=3/3	
1 a	01000	M	0-10	3	10-6/6	10-20	5	10-4/4	20-35	7	7.5-3/3	35-50	5	7:5-4/6	
· .	01100	M	0-10	<b>.3</b> _? ∙	10-6/6 10-6/8 7.5-3/3	10-20	4	10-4/6	20-50	6	10-4/4	50-80	5	5-3/4	5% (L.)
	P0200	C	0-15	<u>6</u>	7.5-3/3	15-50	≠6	5-3/3	50-100	)5	5-3/3				
	P0300	M.	0-20	7:	5-2/2	20-50	<u>5</u>	5-3/4	50-100	)5	5-3/4	•			9 A ()
- j.	P0400	. В. м	0-15	4	7.5-4/4	5-203	7	7.5-2/2	20-50	6	5-3/3	50-60	6	5-3/3	بار ا
	20100 20600	,n; M⊃∘	0-13-2	3	7.5-4/6	12-30	0. 2	7.5-3/2	30-40	6	7.5-3/4	40-50	5	5-2/4	
	P0700'-	-M	0-35	-0) -4-1	7.5-6/8 10-5/8	35-50	۰ م	2 5-3/4	50-100	. ol	,⊃=3/4 : 7 5=2/3		·	·	197 - 18 - 1 1
-	P0800	в	0-10	3	10-6/6	10-20	7	7 5-2/2	20-50	6	7 5-3/3	じょうしゃ 50-100	5	5-01/4	tine'; M
	P0900	M	0-20	3	10-5/8	20-40	_6'	10-3/4	40-60	7	5-2/4	60-25	5	5-4/4	
	P1000		0-5	3	10÷6/6	5-20	7	7.5-2/2	20-30	5	5-2/4	30-50	6	5-3/3	
	Q0200	н	0-20	7	7.5-2/3	20-50	5	5-2/4	50-60	5	5-2/4	60-75	6	5-2/4	
	00800	C	0-20	6	7.5-2/2	.20-30	6	7.5-2/2	30-50	4	5-478	50-100	4	5-4/8*	<del>ر</del> وب ب
•	Q0400	H	0-10	7	7.5-2/3	10-20	6	7.5-3/3	20-35	5	5-2/3	35-50	4	5-4/8	· · · ·
	Q0500	H.	0-10 .	5	5-3/3	10-15	.7.	5-3/3	15-20	6	5-3/4	20-50	5.	5-4/8	2
· · ·	Q0600.	н	0-10	$4_{2}$	7.5-4/4	10-20	-6	7.5-4/4	20-50	5	7:5-476	50-70	6	5-214	
	Q0700 Q0800		0-20 0-15	D È	5-2/2	20-40	4	5-3/4	40-50	5	5-4/8	50-70	5	5-4/8	
	00900		0=10	3 · 7	7.5-4/4	10 <u>740</u> 10–20		7-5-3/4	40-50	4	1.5-5/8	_50 <u>-</u> 80	6	5-3/6 7.5-4/4	بلامتا سيوبيه رأر
-	Õ1000 :		0-25	7	5-214	25-50	2	5-276	20-20 50-60-	4	5-9/8 ··	50 <u>-70</u>	6	7.5-4/4	÷.
	Ř0600		0-5	4	7.5-4/6	5-10	7.	5-4/3	10-25		J-3/0. 7 5-9/9	00-10	0	5-2/4	
				-				····	TO - 20	1	1.3-3/3		°,	.1.5-3/4	

* LAY5 H COL5 LAY6 'HCOL6 LAY7 H COL7 / LAY8 H COL8 M-100 80-1007 5-3/3 45-50 6 5-4/4 M0000,~ 50-55 6 5-4/4 55-75 5 5-4/8 75-1005 5-2/4 65-70 5 5-4/6 M0100 70-1006 5-2/4 M0200 MOSOO 65-1007 7.5-4/6 M0400 90-1007 7.5-3/4 M0500 M0600 50-1007 5-2/4. M0700 50-60 5 5-4/6 60-75 6 5-2/3 75-1004 5-4/6 M0800 M0900 M1000 65-1007 5-2/4 70-90 4 7.5-4/6 90=1005 5-3/4 M1100 M1200 50-80 5 5-3/2 80-1004 5-4/8 50-60 5 7.5-3/4 60-80 6 7.5-3/3 80-90 5 7.5-3/3 90-1004 7.5-3/4 M1300 -30-40 4 5-5/8 M1400 40-50 5 5-4/6 50-65 5 5-3/6 65-80 6 5-3/6 50-60 5 5-4/6 M1500 60-90 6 5-2/3 90-1005 2.5-3/2 50-75 4 5-5/8 N-100 75-85 6 5-3/3 85-1004 5-3/4 NOOOO N0100 -50-70 5 2:5-2/4 70-80 4 5-4/8 80-1006 5-2/4 N0200 N0300 60-1006 5-2/4 85-1007 5-4/8 N0400 N0500 50-75 5 5-3/6 N0600 75-1007 5-2/4 N0700 65-80 4 5-4/8 80-1006 2.5-2/4 N0800 50-65 6 7.5-3/3 65-80 4 5-4/8 65-75 4 5-4/8 75-1007 5-2/4 N0900 80-1007 2.5-2/4 N1000 N1100 N1200 50-80 5 5-3/6 80-1007 5-3/3 N1300 85-1006 5-2/4 0-100 00000 60-70.5 5-3/6 50-60 6 5-3/6 70-1007 5-2/4 70-1006 5-2/4 00100 . . . . 00200 70-1005 2.5-3/4 00300 00400 35-50 5 5-3/6 50-60 5 5-3/6 60-85 6 7.5-4/4 85-1007 5-3/4 00500 00600 90-1005 5-3/6 00700 60-80 4 5-4/8 80-90 5 2.5-2/4 none 00800 00900 01000 50-85 7 7.5-4/4 85-1007 2.5-3/3 01100 80-1006 5-3/4 ~ • ; P0200 P0300 P0400 60-80 4 5-4/8 80-90 4 7.5-4/8 90-1--4 7.5-3/2 P0500 50-1005 5-2/4 P0600 P0700 P0800 P0900 85-1007 5-2/2 P1000 50-80 4 5-4/8 80-1005 5-4/8 Q0200 75-1004 5-4/8 Q0300 Q0400 50-1004 5-4/8 50-60 7 7.5-4/4 60-80 5 5-4/6 Q0500 (80-1006 5-3/6 Q0600 70-1005 5-3/6 70-1006 5-3/4 14 Q0700 90-1005 5-4/8 QÖ800 80-90 5 5-4/8 Q0900 70-80 5 7.5-5/8 80-1006 7.5-4/4 01000 75-1004 5-3/6 R0600 55-90 5 5-2/4 90-1004 5-4/8

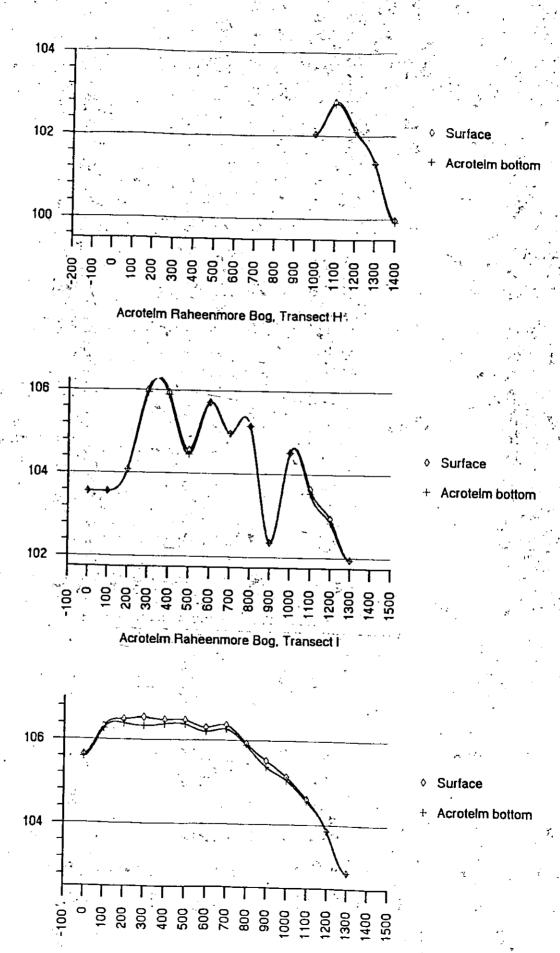
	3	LAY9	н соца	LAY10 H	COL10	LAY_X1H	COL X1	LAY X2H	COL X2	L PERLET
	M-100	5.40 ⁻⁴⁶			ي من م					a second as the
	M0000 M0100	۲. ۲			: میترین در ا					
j Soverna en	M0200		8					3 		
	M0300 M0400			1 1		0-10 3	Å 10∸676 -		<b>X</b>	نې د د. مېرې د ۲۰
	M0500÷ M0600≫					5-15 3	7.5-2/2	الي کې د. پېښې کې د ويو م		
	M0700 *	1.5	- بالم 1. الم الم 1. الم الم الم الم الم		1999 - L	15-25 5			، بې د د د بې د مې د	
	M0800 M0900			<u> </u>		10-20 4		¥	<u> </u>	
	M1000 M1100			بر این	ئىر م يۇچۇ يە	20-30 [°] 5 0-10 2	7.5-4/4	د. المسلم من المراجع مسلم المراجع		
	M1200. M1300	2	and the	ina "		ж	10 0,0	સું ૈર્ગ ભ		
	11400		5 5-4/8	85-1006	5-3/4		đ.		1	مېر د مېريند. د کېږې
	M1500 - N-100			اليط به الم الينية. الم		0-5 3	10-6/8	5=10 5		
	NOOOO NO100	. к ^а ла - та				0-5 3	10-6/6			
	N0200		2	ان مور میشور.		*	7.5-3/3	F.,		
	N0300 N0400 s					0-10 3	7.5-5/8		A:	
	N0500 N0600			× ,.				ಕೆ ಸ್ಪರ್ ಕ್ರಿಕೆ ಕೆಂಗ್ ಕ್ರಿಕೆ ಕೆಂಗ್		
	NO700 . NO800 .				۵. ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰		аў. —			
	N0900		e e l'arte a construction de la construcción de la construcción de la construcción de la construcción de la con La construcción de la construcción d La construcción de la construcción d		ر میں بیانی ہے۔ روائی ہے کہ اور		13.			يەر بەر بەر يېرىڭ دۆلەر
	N1000 N1100								ê r	
	N1200 N1300									
**** ( [*] *** (	0-100	the second			San an a					
°", •"" (	00100	5. 3. V.C. 1				in the				به المراجع من من المراجع المراجع به مراجع المراجع المراج المراجع المراجع
· · · · (	002005 00300	-		and and a second se Second second s	್ರಾಂಗ್ ಹಿಂದಿಕೆ ಸಂಗ್ರಾಮಿ					the life
	00400 00500~				ین میں از میں اور مرمونی میں فیک میں					
. (	00600							\$** 		
. <b>*</b> (	00700% 00800 -			2 - N. ( 			<u>.</u> 			ार्थः व
	0900. 01000.			i terra.			1			
	01100 0200									
j <b>j</b> 1	P0300-		ا میں ور دیگر در دیگر کے دی			¥,				and a second second Second second second Second second
	P0400 P0500			and and a second se		4	ر آمرین از طرح و د	المية المراقعة أوانية. المراقع الموانية		
्री	P0600 P0700					· ·		an in the second se	÷.	* • •
1	P0800		na di kacana Jaho na di kacana	tin in era	n na	1		S		nv sa till till till till till till till til
	P0900. P1000			1. N.			े. य			
	20200		* 		هي . ه ب					
ં નંડ	20400			• •				,- ,	1. A	
S	20500 20600		REMARKS						1. 	
S S	20700- 20800		10500 10600	CL South	Itaway ar Itaway ar	ea 🍾	t t ^{an}			
· · · · · · · · · · · · · · · · · · ·	20900 21000	د تقریب آنیسجر عصر از این ام هوچونده	10700 , 10800	🗧 🗧 🗄 no	o drillin	g too	hard	يىيىدىكە بويەنىگەنچە بىر بىر بىر بىرىكەنچە	میں میں سوتھ میں ہے۔ مرکزہ میں	فيت الأرامية المردم مراجع المراجع
دي ار پر	80600		⊂,I0900	dı dı	ry area illing i	n wet ho	llow.			
			5 ° * *							

ADDRIVDAY 10		
APPENDIX 13	DATA OF SUPPLEMENTARY	ACROTET M MAPPINE IN
المحرج الألم والمحرج	SPHAGNUM HOLES	NOROTELII IMITING IN
	OT INGROUP HOLES	

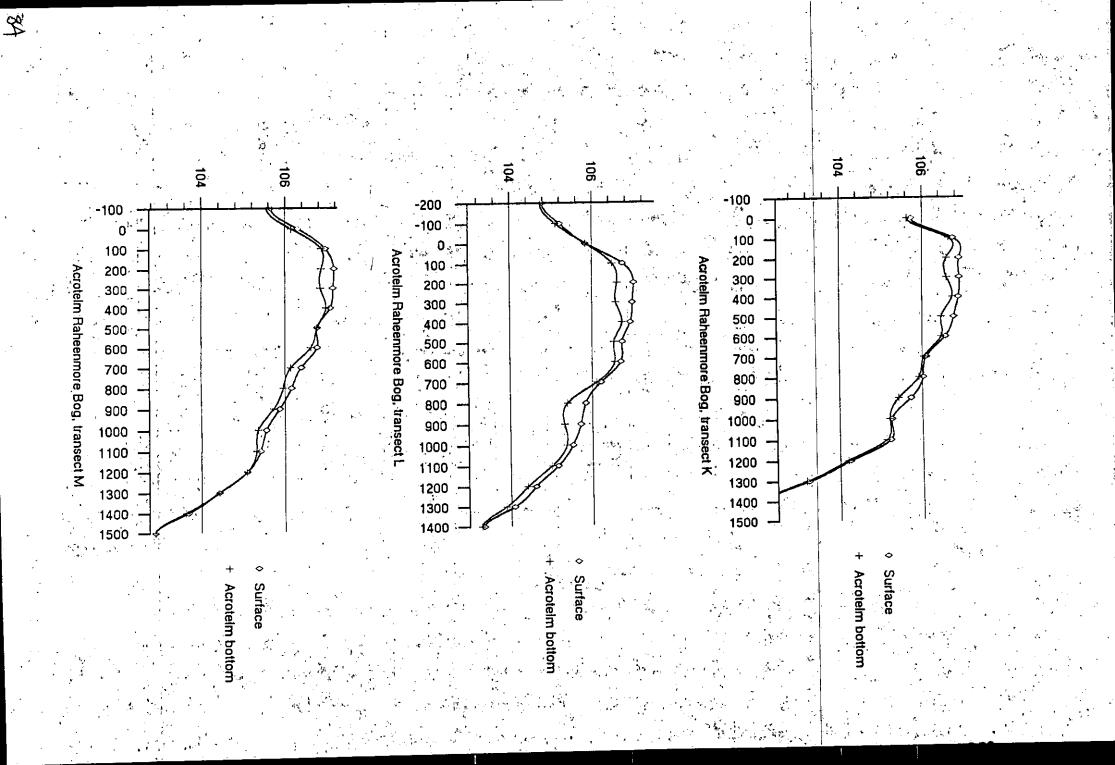
		S. 1. 1.	· . t		la 👻	1997 <b>-</b>	
COORD LAY1 H	COLI	LAY2	H CO	1.2	I AV3	H COLA	
I1200 0-10 4	10-6/6					п. сопр	
I1200 0-10 4 J0 0-5 4	106/6	· · · · ·	4 ¹		· · ·		
J100 0-5 3	10-5/6	5-20	6 7	5 - 2/3			
01000,0-0 3	10-3/6			- 2/5	,		
J1100 0-5 3	- 2	5-10	4			i, ia	
J300 ^{(*} 0-10 3	7.5-4/6	ີ 10-2 <b>ດ</b>	4.7	5-476	20-25	6 7 5-3	13
- 01-10 - 10 - 10 - 10 - 10 - 10 - 1	10-3/4	10-30	6 7.	5-2/1		0 110 5/	5
KU 0-10 4	7.5-4/3	10-30	7 7	5-2/2			
VIO0 0-10 3	10-6/6	10-20	7 10	-2./1			
A1000 0-5 3	, . <del>.</del> *	5-10	<b>S</b> .		1. A.	• • •	
A1200 0-5 3	10-6/4	5-15	5 10	-6/4		۰ <b>۰</b>	
K200 0-60 3	10-5/8	20.2	·				
V200 0-2-3	10-6/6	5-30	4 10	-4/6		•	*
K400 0-15 3	10-578	15-25	5 10.	-1/2			
<b>X3UU</b> 0-30 4	10-6/6	30 - 40	5 10	-9/4		ê	
	10-2/6	10-20	5 7 1	5-2/4		•	
K800 0-10 2	10~6/8	10-20	6 7	5-2/3		•	
VA00 · 0-30 3	- ¹ 2	· · ·			••	.`	
L1000 0-10 3	10-5/4	(		¥.	÷.	` *	
L1300 0-5 3	10-6/4	5-10	5 7.	5-2/3	10-20	3 10-576	
L400 0-20 4	10~5/8		· · · · ·	-		v 10 0/0	
L500 0~5 5	7.5-3/4	5-20	4 7.	5-4/6			
WT000 0-2 % 7		5-10	3		10-15	5	
N1100 0-10 3			~ .				
N300 0-10 3	7.5-5/8		· • • • • • •		. او ا	÷	
N500 0-20 3	7.5~5/8	. ·					
01100 0-10 3						*	

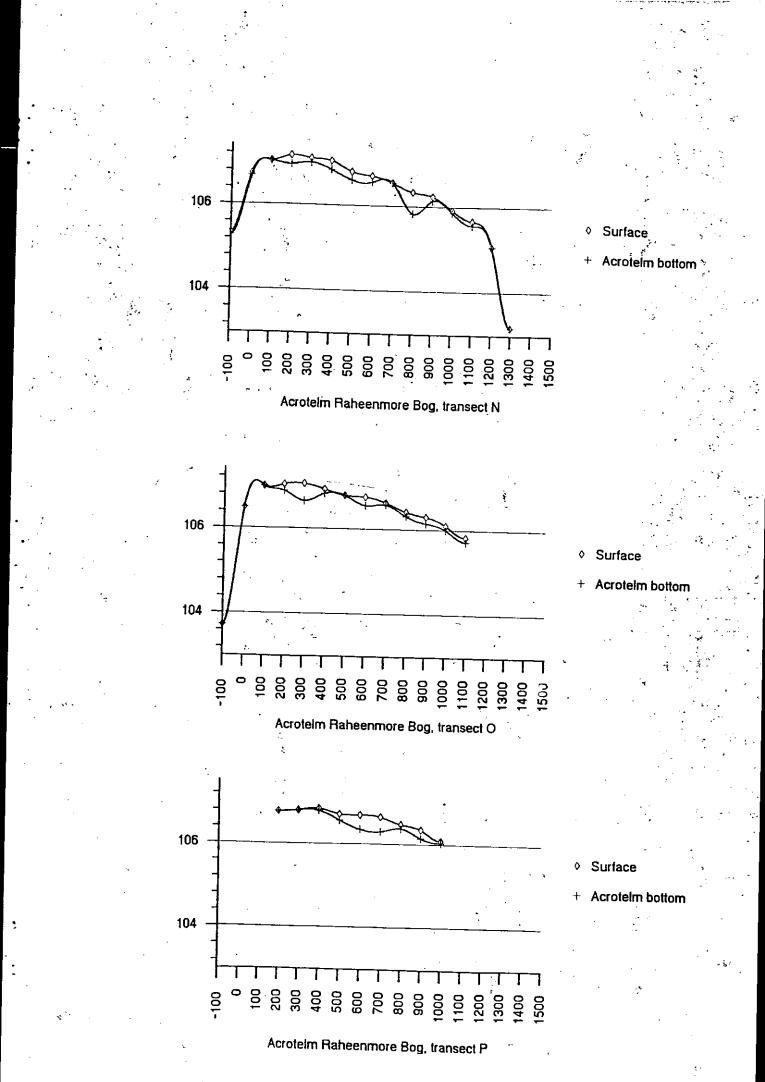

#### Explanation Appendix 12 and 13

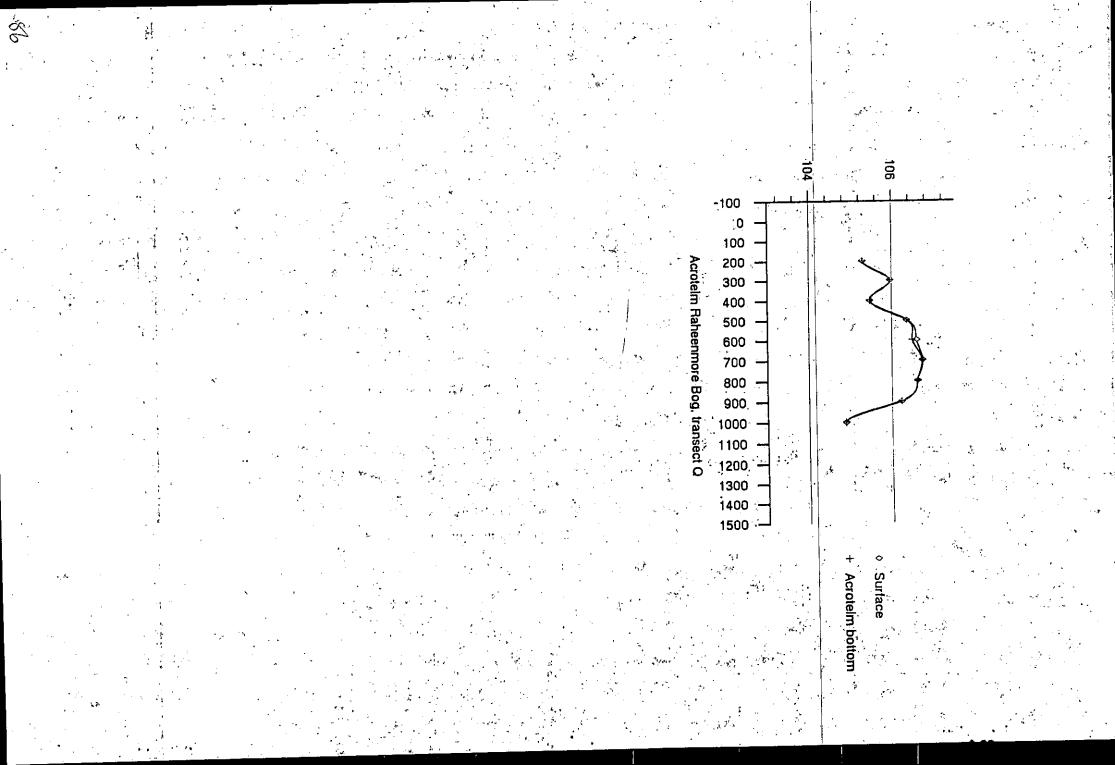
Ħ


coord layı

= coordinate of the grid system of Raheenmore = the first layer of the bog, the thickness is given in centimeters, the beginning end the end of the layer (vertical) is given = humification degree according to Von Post = the colour of the first layer according to Munsell


Coll





APPENDIX 14 CROSS SECTIONS OF THE ACROTELM ON RAHEENMORE BOG



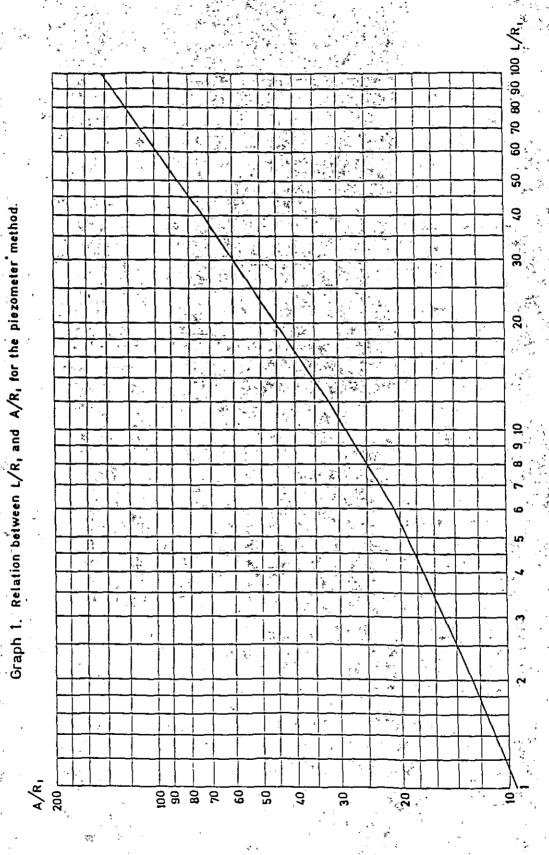
Acrotelm Raheenmore Bog, transect J







15 APPENDIX


1

<u>}.</u>

NOMOGRAMS FOR THE DETERMINATION OF THE GEOMETRIC CONSTANTS IN THE FALLING AND RISING HEAD TEST int Sint Sint

From Handleiding Veldpracticum Hydrologie (University Wageningen)

 $\overline{C}$ 



Ho _ 244/3

ĩ	ý 40 . e	્રાણ કે પુરુષ સ્ટેટ		4.					, , , , ,		_	_		1 a . A 1 a	,' 	i. A h a	، ر	¢.		 		· ·	۽ ب
4. 5.	•	Gra	sh.,	2.	Re Shi	la ezc	ion met	bet∨ ur∵m	veer etho	n L Sd:	, к		nav	Ą I	and and a second	ine ( )	9	3	, É	۰		*	
					<b>.</b> P		- <del></del>				je s	. ,'				1		us Va					P 2.
	ín c	آ	а С. ч.	فيدر	é. N				i pro		t	زي . بر ا		in de la com A			ξų.			64	ант 13 16 Ма	ייי די וונו	· ***
÷.,	100	1					in a c			<u></u>		4	કે	т —	r	•	Titl	.ş. !	[]	-			
	2 90 2 90	11 6 8	47	$(\mathcal{V})$	$\mathbb{A}$	$\left( \right)$					,		·				14			د د	i		
	80	112		$\left( \cdot \right)$	$\mathcal{H}$	$\not\vdash$	$\left  \right\rangle$		5 5 5 5 7 1	. ₹.	0 * 1 -				- <u>1</u>					•			, ¹⁴⁴
	70			$\mathcal{H}$	$\left\{ \right\}$	$\mathcal{H}$	$\mathcal{H}$	<u> </u>	1. 			<i></i>			<b> </b>	4) 4)							مر، ر ر
	60	::::: 	ļ	$  \Sigma$	$\overline{V}$	$\square$	$\overline{1}$	$\square$			<u> </u>	~			1 <u></u>								12
		11. 〕			$\mathbb{N}$			()	k.	]	1				<u> </u>		Å	30 P		Ŭ4		;	
	<b>5</b> 0	<u>r</u>			5	$\overline{V}$	$\overline{77}$	$\overline{XZ}$	[Z]		E	алан 1	, , , 7		<u> </u>	•	~				 2		• -4
	. 40					$\square$	47	44	$\left( \sum_{i=1}^{n} \right)$	ŀ-			۰ بر ا	<u> </u>				· · · · ·			25. s	<u>, '</u>	ي. ماني و
	; .				,÷-;	Ŀ	$ \gamma\gamma\rangle$	Y /	<del>}_</del>	$\left\{ \cdot \right\}$	<u>L</u>		<u> </u>		<u> </u>	¥			A		2		•
	30				:17	L	$  \rangle$	17	$\overline{V}$	$\sum$	$\square$		1 - 1						1			<u>.                                    </u>	
	30	,		 		3 rd	$ \cdot _{\gamma}$	(X)	$\langle \cdot \rangle$	$\mathcal{N}$	$\left  \right\rangle$	$\mathbb{N}$	17 a a	1,				· · · · · · · · · · · · · · · · · · ·		₹ fi			
	• "•	1					1. 3	$\uparrow \uparrow$	$\mathbf{T}$	$\nabla$	$\mathbf{h}$	1	1.5	1.	<b> </b>	<u> </u>			14.90		8.		•
				•	*		- e.	$\{X_{i}\}$	K-1	$\langle \rangle$	$\mathbb{N}$	$\langle \rangle$	$\langle . \rangle$					÷.					. :
•	- 20						- 4		[X]	$\Lambda_{}$	$\Delta$	<u>[]</u>	[]	<u>A</u>		. 6 1		<u>, </u>					
	• •	· · · · ·		ар н. 			<u> </u>	78.0	$\underline{()}$		$  \rangle$	( )	$\overline{\left( \cdot \right)}$		$ \downarrow $	<u>, 0 ;</u>				31			
	4		· · ·		]	ŀ	<u></u>	_	$ \lambda $	Ι <del>\</del> -	A	Д	1	$\left  \right\rangle$	$\left  \right\rangle$						·	, – ,	
· · · ·	1. A.		ка 10 г. – .	· · ·		<u></u>	<u>ې</u> ر ح	:70		( )	Ц	36° 	Ϋ́́	$\mathbb{A}$	X	A-				<u> </u>	**. ***		
	ân - a	1.143	÷ .							$\mathbb{N}$	$\mathbb{N}$	Ň		( )	$\langle \rangle$	Į. N			т. Т		- (	) 	120
	ୁ <u>ି</u> 10		1		Ϊ,	1		<u></u>		-	$\Box$			$ \Sigma $	T	$\Lambda$	$[\mathbf{X}]$	<u> </u>				34 ( 	<b>企</b> 。"
	9 		3 <b>4</b> 5	· · · ·				 			1	$\mathcal{F}$	$\sum_{i=1}^{n}$	(1)	<u> - "</u> ]	[ ]		<u>}.</u>		3	<b> </b>		к' .( 1 ¹ - 1
	7			5.		· · · ·		1 <u>1</u> 1	ţ		<u>ک</u>	$\left[ \right]$	<u></u>	$ \downarrow$	$\Lambda$	<u>Α</u>	Ý		Pr		_		۳. ۲
	e i				2 2 - 2 - 2 - 2 - 2 - 2			i. ;	10	18.4		$\boldsymbol{V}$	$f^{\varepsilon}$	A.	( )	<u>``</u>		<u>, , , , , , , , , , , , , , , , , , , </u>	$\sum$	Maria		· .	ية مرة من مهند مرة
•	් ( <b>ර</b>	1 4 4 4			÷.,		۰. م		1 ² -		0	$\square$	[* <mark>\</mark> 2.	$\mathbb{N}^{\mathbb{N}}$	$N^{i}$	$\Lambda^{+}$	N	$\langle \cdot \rangle$	$  \setminus$		÷.,		4
-	5	,							<u> </u>		 	[]	<u>6</u> 5	<u>ــــــــــــــــــــــــــــــــــــ</u>	<u>,</u> €.	ר_ן זייי	בין ז ק	1.5	ا سبسا	1 ci			8 
	2		÷ .			~ 1				<u></u>		Ŀ				<u>ו</u>		×	<b> </b>		ی در است	13	
1	et	10	t.	-1	•	2	<u>.</u>	3	Ő	<u>_</u> 4	0	5	0	•	ری ان مر د		10	0	•		*	20	រុត្ត
	1 2 4			1	; ;y		÷",		, er 7 ,			•	•			• • • •		ч. <b>ч</b> .	A		<u>8</u>	64	Π
		1.	· •	• •	5			·	2								. '	.5	1 x			A	

APPENDIX 16       DATA, CALCULATIONS AND GRAPHS OF PIE         CONSTANT HEAD         date       17-4-1991 (numbers 1 to 4) 19-4-1991 (numbers 3 and 5)         location 'K1250 (near groundwaterrecorder)         tubenumber       1       2         filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.16         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t1 (1)       9.4       9.4       9.5         watervolume vessel t2 (1)       9.0       9.0       9.2         time difference (min)       116       116       116         Q infin (1x10E-3(1/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0.31         imposed head y0 (m)       0.20       0.19       0.19         internal diameter (m)       0.021       0.021       0.021         imposed head y0 (m)       0.20       0.31       0.16       0.31         watervolume vessel-t1 (1)       7.3       8.3       8.6	in the second	
date $17-4-1991$ (numbers 1 to 4) 19-4-1991 (numbers 3 and 5 location 'K1250 (near groundwaterrecorder)         tubenumber       1       2       3(1)         filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.18         internal diameter (m)       0.021       0.021       0.021         shape factor S       0       31       0.16       0.31         watervolume vessel t1 (1)       9.4       9.4       9.5         watervolume vessel t2 (1)       9.0       9.0       9.2         time difference (min)       116       116       116         Q infin (lx10E-3(1/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0.07         tubenumber       5       6       7         filterlenght (m)       0.22       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.021         imposed head y0 (m)       0.20       0.16       0.31         internal diameter (m)       0.021	EZOMETER TI	EST 1
date $17-4-1991$ (numbers 1 to 4) 19-4-1991 (numbers 3 and 5 location 'K1250 (near groundwaterrecorder)         tubenumber       1       2       3(1)         filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.18         internal diameter (m)       0.021       0.021       0.021         shape factor S       0       31       0.16       0.31         watervolume vessel t1 (1)       9.4       9.4       9.5         watervolume vessel t2 (1)       9.0       9.0       9.2         time difference (min)       116       116       116         Q infin (lx10E-3(1/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0.07         tubenumber       5       6       7         filterlenght (m)       0.22       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.021         imposed head y0 (m)       0.20       0.16       0.31         internal diameter (m)       0.021		
date $17-4-1991$ (numbers 1 to 4) 19-4-1991 (numbers 3 and 5 location 'K1250 (near groundwaterrecorder)         tubenumber       1       2       3(1)         filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.18         internal diameter (m)       0.021       0.021       0.021         shape factor S       0       31       0.16       0.31         watervolume vessel t1 (1)       9.4       9.4       9.5         watervolume vessel t2 (1)       9.0       9.0       9.2         time difference (min)       116       116       116         Q infin (lx10E-3(1/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0.07         tubenumber       5       6       7         filterlenght (m)       0.22       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.021         imposed head y0 (m)       0.20       0.16       0.31         internal diameter (m)       0.021		
$19-4-1991 \text{ (numbers 3 and 5)} \\ 10cation 'K1250 (near groundwaterrecorder) \\ tubenumber 1 2 3(1) \\ filterlenght (m) 0.2 0.1 0.2 \\ perforation percentage 10 10 20 \\ imposed head y0 (m) 0.20 0.19 0.18 \\ internal diameter (m) 0.021 0.021 0.021 \\ shape factor S 0.31 0.16 0.31 \\ watervolume vessel t1 (l) 9.4 9.4 9.5 \\ watervolume vessel t2 (l) 9.0 9.0 9.2 \\ time difference (min) 116 116 116 116 \\ Q infin (lx10E-3(1/s)) 0.057 0.057 0.057 0.043 \\ hydr. conduc. k (m/day) 0.08 0.16 0.07 \\ imposed head y0 (m) 0.20 0.19 0.19 \\ internal diameter (m) 0.021 0.021 0.021 \\ shape factor S 0.31 0.16 0.07 \\ watervolume vessel t2 (l) 9.0 9.0 9.0 \\ hydr. conduc. k (m/day) 0.08 0.16 0.07 \\ watervolume vessel t2 (l) 7.1 8.3 8.1 \\ time difference (min) 180 180 180 \\ watervolume vessel t2 (l) 7.1 8.3 8.1 \\ time difference (min) 180 180 180 \\ Q infin (lx10E-3(1/s)) 0.019 0.000 0.046 \\ \end{array}$	an bili i i i i i i i i i i i i i i i i i	
$19-4-1991 \text{ (numbers 3 and 5)} \\ 10cation 'K1250 (near groundwaterrecorder) \\ tubenumber 1 2 3(1) \\ filterlenght (m) 0.2 0.1 0.2 \\ perforation percentage 10 10 20 \\ imposed head y0 (m) 0.20 0.19 0.18 \\ internal diameter (m) 0.021 0.021 0.021 \\ shape factor S 0.31 0.16 0.31 \\ watervolume vessel t1 (l) 9.4 9.4 9.5 \\ watervolume vessel t2 (l) 9.0 9.0 9.2 \\ time difference (min) 116 116 116 116 \\ Q infin (lx10E-3(1/s)) 0.057 0.057 0.057 0.043 \\ hydr. conduc. k (m/day) 0.08 0.16 0.07 \\ imposed head y0 (m) 0.20 0.19 0.19 \\ internal diameter (m) 0.021 0.021 0.021 \\ shape factor S 0.31 0.16 0.07 \\ watervolume vessel t2 (l) 9.0 9.0 9.0 \\ hydr. conduc. k (m/day) 0.08 0.16 0.07 \\ watervolume vessel t2 (l) 7.1 8.3 8.1 \\ time difference (min) 180 180 180 \\ watervolume vessel t2 (l) 7.1 8.3 8.1 \\ time difference (min) 180 180 180 \\ Q infin (lx10E-3(1/s)) 0.019 0.000 0.046 \\ \end{array}$		
location 'K1250 (near groundwaterrecorder)tubenumber123(1)filterlenght (m)0.20.10.2perforation percentage101020imposed head y0 (m)0.200.190.18internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t1 (l)9.49.49.5watervolume vessel t2 (l)9.09.09.2time difference (min)116116Q infin (lx10E-3(1/s))0.0570.057hydr. conduc. k (m/day)0.080.160.07tubenumber567filterlenght (m)0.220.10.2perforation percentage101020imposed head y0 (m)0.200.190.19internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t1 (l)7.38.38.6watervolume vessel t2 (l)7.18.38.1time difference (min)180180180Q infin (lx10E-3(1/s))0.0190.0000.046		
tubenumber123(1)filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.18$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (l) $9.4$ $9.4$ $9.5$ watervolume vessel t2 (l) $9.0$ $9.2$ time difference (min) $116$ $116$ $Q$ infin ( $1x10E-3(1/s)$ ) $0.057$ $0.057$ hydr. conduc. k (m/day) $0.08$ $0.16$ $0.77$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.319$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31 0.16$ $0.31$ watervolume vessel t1 (l) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (l) $7.1$ $8.3$ $8.16$	51 TO 8)	
tubenumber123(1)filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.18$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (l) $9.4$ $9.4$ $9.5$ watervolume vessel t2 (l) $9.0$ $9.2$ time difference (min) $116$ $116$ $Q$ infin ( $1x10E-3(1/s)$ ) $0.057$ $0.057$ hydr. conduc. k (m/day) $0.08$ $0.16$ $0.77$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.319$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31 0.16$ $0.31$ watervolume vessel t1 (l) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (l) $7.1$ $8.3$ $8.16$		
filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.18         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t1 (l)       9.4       9.4       9.5         watervolume vessel t2 (l)       9.0       9.0       9.2         time difference (min)       116       116       116         Q infin (lx10E-3(l/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0.7         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.19         internal diameter (m)       0.021       0.021       0.021         perforation percentage       10       10       20         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t2 (l)       7.1       8.3       8.6         watervolume vessel t2 (l)       7.1       8.3	हे.स्ट्र ⁴ ि	
filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.18         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t1 (l)       9.4       9.4       9.5         watervolume vessel t2 (l)       9.0       9.0       9.2         time difference (min)       116       116       116         Q infin (lx10E-3(l/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0.7         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.19       0.19         internal diameter (m)       0.021       0.021       0.021         perforation percentage       10       10       20         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t2 (l)       7.1       8.3       8.6         watervolume vessel t2 (l)       7.1       8.3	.) 3(2)	4
perforation percentage101020imposed head y0 (m)0.200.190.18internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t1 (l)9.49.49.4yatervolume vessel t2 (l)9.09.09.2time difference (min)116116Q infin (1x10E-3(1/s))0.0570.057ydr. conduc. k (m/day)0.080.160.07yerforation percentage101020imposed head y0 (m)0.200.190.19internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t1 (l)7.38.38.6watervolume vessel t2 (l)7.18.38.1time difference (min)180180180yatervolume vessel t2 (l)7.18.38.1time difference (min)180180180yatervolume vessel t2 (l)7.18.38.1		· . ·
Imposed head y0 (m)       0.20       0.19       0.18         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t1 (l)       9.4       9.4       9.5         watervolume vessel t2 (l)       9.0       9.2       9.5         watervolume vessel t2 (l)       9.0       9.2       9.3         time difference (min)       116       116       116         Q infin (lx10E-3(l/s))       0.057       0.057       0.043         hydr. conduc. k (m/day)       0.08       0.16       0:07         tubenumber       5       6       7         filterlenght (m)       0.2       0.1       0.2         perforation percentage       10       10       20         imposed head y0 (m)       0.20       0.49       0.9         internal diameter (m)       0.021       0.021       0.021         shape factor S       0.31       0.16       0.31         watervolume vessel t1 (l)       7.3       8.3       8.6         watervolume vessel t2 (l)       7.1       8.3       8.1         time difference (min)       180       180       180 <td>2 0.2</td> <td>0.1</td>	2 0.2	0.1
internal diameter (m) $0.021$ $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t2 (l) $9.0$ $9.0$ $9.2$ time difference (min) $116$ $116$ $116$ Q infin (lx10E-3(l/s)) $0.057$ $0.057$ $0.043$ hydr. conduc. k (m/day) $0.08$ $0.16$ $0.07$ tubenumber567filterlenght (m) $0.22$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (l) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (l) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(l/s)) $0.019$ $0.000$ $0.046$		20
shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $9.4$ $9.4$ $9.5$ watervolume vessel t2 (1) $9.0$ $9.0$ $9.2$ time difference (min) $116$ $116$ $116$ Q infin (1x10E-3(1/s)) $0.057$ $0.057$ $0.043$ hydr. conduc. k (m/day) $0.08$ $0.16$ $0.07$ tubenumber567filterlenght (m) $0.22$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (1x10E-3(1/s)) $0.019$ $0.000$ $0.046$		0.22
watervolume vessel t1 (1)9.49.49.4watervolume vessel t2 (1)9.09.09.2time difference (min)116116116Q infin (lx10E-3(l/s))0.0570.0570.043hydr. conduc. k (m/day)0.080.160.07tubenumber567filterlenght (m)0.20.10.2perforation percentage101020imposed head y0 (m)0.200.190.19internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t2 (1)7.18.38.6watervolume (min)180180180Q infin (lx10E-3(l/s))0.0190.0000.046		0.16
watervolume vessel t2 (1)9.09.09.2time difference (min)116116116Q infin ( $1x10E-3(1/s)$ )0.0570.0570.043hydr. conduc. k (m/day)0.080.160.07tubenumber567filterlenght (m)0.20.10.2perforation percentage101020imposed head y0 (m)0.200.190.19internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t2 (1)7.18.38.6watervolume vessel t2 (1)7.18.38.1time difference (min)180180180Q infin ( $1x10E-3(1/s)$ )0.0190.0000.046	्यू	,÷
watervolume vessel t2 (1)9.09.09.2time difference (min)116116116Q infin ( $1x10E-3(1/s)$ )0.0570.0570.043hydr. conduc. k (m/day)0.080.160.07tubenumber567filterlenght (m)0.20.10.2perforation percentage101020imposed head y0 (m)0.200.190.19internal diameter (m)0.0210.0210.021shape factor S0.310.160.31watervolume vessel t2 (1)7.18.38.6watervolume vessel t2 (1)7.18.38.1time difference (min)180180180Q infin ( $1x10E-3(1/s)$ )0.0190.0000.046		
hydr. conduc. k (m/day) $0.08$ $0.16$ $0.07$ tubenumber567filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage101020imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(1/s)) $0.019$ $0.000$ $0.046$	2. 7.1	
hydr. conduc. k (m/day) $0.08$ $0.16$ $0.07$ tubenumber567filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage101020imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(1/s)) $0.019$ $0.000$ $0.046$	.6 180	,
tubenumber567filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin ( $1x10E-3(1/s)$ ) $0.019$ $0.000$ $0.046$	3 🧭 0.056	0.050
tubenumber567filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin ( $1x10E-3(1/s)$ ) $0.019$ $0.000$ $0.046$	0.07	0.12
tubenumber567filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin ( $1x10E-3(1/s)$ ) $0.019$ $0.000$ $0.046$	-41*	0.12
tubenumber567filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin ( $1x10E-3(1/s)$ ) $0.019$ $0.000$ $0.046$		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
filterlenght (m) $0.2$ $0.1$ $0.2$ perforation percentage $10$ $10$ $20$ imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(l/s)) $0.019$ $0.000$ $0.046$	* *	48 - 1
perforation percentage101020imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(l/s)) $0.019$ $0.000$ $0.046$		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
perforation percentage101020imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(l/s)) $0.019$ $0.000$ $0.046$	2 0.1	n an
imposed head y0 (m) $0.20$ $0.19$ $0.19$ internal diameter (m) $0.021$ $0.021$ $0.021$ shape factor S $0.31$ $0.16$ $0.31$ watervolume vessel t1 (1) $7.3$ $8.3$ $8.6$ watervolume vessel t2 (1) $7.1$ $8.3$ $8.1$ time difference (min) $180$ $180$ $180$ Q infin (lx10E-3(l/s)) $0.019$ $0.000$ $0.046$	0 20	
watervolume vessel-t1 (1)7.38.38.6watervolume vessel t2 (1)7.18.38.1time difference (min)180180180Q infin (lx10E-3(l/s))0.0190.0000.046	9 0.16	
watervolume vessel-t1 (1)7.38.38.6watervolume vessel t2 (1)7.18.38.1time difference (min)180180180Q infin (lx10E-3(l/s))0.0190.0000.046	1 0.021	şt
watervolume vessel-t1 (1)7.38.38.6watervolume vessel t2 (1)7.18.38.1time difference (min)180180180Q infin (lx10E-3(l/s))0.0190.0000.046	1	
watervolumevesselt2(1)7.18.38.1timedifference(min)180180180Qinfin $(1x10E-3(1/s))$ 0.0190.0000.046	e e e an a sa	-34
time difference (min) 180 180 180 Q infin (lx10E-3(l/s)) 0.019 0.000 0.046		
Q infin (lx10E-3(l/s)) 0.019 0.000 0.046		
에는 약 같이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 가격이 있는 것이 있는 가 같이 있는 것이 같이 있는 것이 있는 것	6 0.056	
<b>nyar.</b> conduct k $(m/day)$ 0.03 0.00 0.07	· · · · · · · · · · · · · · · · · · ·	* (m*
	7 *** *** 0.20	

RISING HEAD METHOD

DATA		, d	ate: 13-3	3-91	- -	اند. اندار چا		
		n an traite de la set An traite de la set						
tube		2	3	4	. 78.4	. 26-е. Ртара	* 75 7	71.2
, wat lev	78.1	82.8	83	82.4	/8.4	/5:5	15.1	1.1.2
time(s)	v' (cm) y	ען (כיש) א	(cm) v	ر در (رمس) ر	y' (cm) y'	(cm) v	'(cm) v'	(cm)
	109.3	110.2	110 y	109 -		99.2	101.5	101.4
10	106.6	108.5		106.4		97.8		99.7
	. <b>K</b>	107.8		104.9	94.4	96.8	97.5	98
	101.9					95.6	95.8	96.2
40	100.6	106.4	103.8	103.1	92.2	. 95	94.7	95.1
50	99.3,	105.8	103	102.5	91.6	94.4	93.6,	94
· 60		105.5		101.9	91.1		92.8	93.1
70	97.5		101.9	101.4	°90.5 🔅		92	92:4
AME , 80,			101.4		90.1	92.4	91.1	91.4
90	96.1		101	100.4		91.8	90.5	90.7 89.9
100 110	95.4	104.1	100.4	100.2 99.8	89.3	91.3 90.8	90. 89.5	89.2
120	i a si	103.7	100.1	99.8	88.7	90.8	89.1	88.9
140	5. <b>.</b>				87.9			87.7
160	92.4	- 102.4	98.3	98.3	87.4	89.2	87.2	86.9
180	92.1	101.5		98	.87.3	88.1	86.8	86.1
210	91.5	101	97.4		86.8	87.4	85.8	85
240	90.6	100.6	96.8	96.6		86.7	84 8	84
. 300	89.5	99.8	95.9	95.9	85.7	85.5	83.5	82.2
450. (		97.8	93.7	94.3	84.6	83.4	82.4	. 80
600	86.5	96 .	92.4	93.1	83.6	82.1	81	78.6
900	85	94	90.8			80.6	79.8	76.9
1200	83.8	92.8	89.5	90.6		79.7	79.1	76
1500	83.6	91.3	*** 88.5	89.6	81.2	79	78.5	75.3
2100 2700	82.7 82.1	90.2	87.5	87.9		77.7	77.7	74.4
3600	82.1	89.1 87.8	86.9	87.4	80.5	82,8 80.7	77.4	73.7
5400	80.9	86.5	85	85.5		78.6	76.9	72.9
7200	80.4	85.5	84.7	94.9		77.7	76.8	.72.2
9000	80.1	85 3		84.6		77.7		
10800	79.9	85	84.7	84.5				
12600	80	81.7			**************************************			
14580		81.5	4, -	andra di seconda di se Seconda di seconda di se		5	an a	
ل خ الله الموا		ينية. بيقير					11 : 11 : 11 : 11 : 11 : 11 : 11 : 11	
	de a terre de la companya de la comp	,	• • •	· · · · · · · · · · · · · · · · · · ·		•		
	TONO	, • · · · · · ·	** •				- 1	
CALCULAT	TONP		cty"	· ·	م ² م	• .	, <b>•</b> •	
tube ,	. 1	່າ	<b>.</b>	· · · · · · · · · · · · · · · · · · ·	Дарани с	6	. 7 .	<b>8</b>
perforat		1x10	2x20	2x10	1x20		2x20	²² 2x10
por rorac		1410			1A20	, IALO		
r.(cm)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Lcav (cm		10	20	10	20		20	10
	. 49		49	31	49	31	49	31
			0.004		0.01 0			
<u>k (m/d)</u>	0.41546	0.22574	0.34622 0	.54725	0.86554 0	56366 0	62579-0	.55272
			are t	• •		ىيىچ ئۈت ھە -		
· · · · · · · · · ·			-		0,00371	000785	•	4 
- ln(y)/t	•	•		*	1.		in in a second	
· · ·		•	*	2. 	- 		· ·	

Ţ

. . .

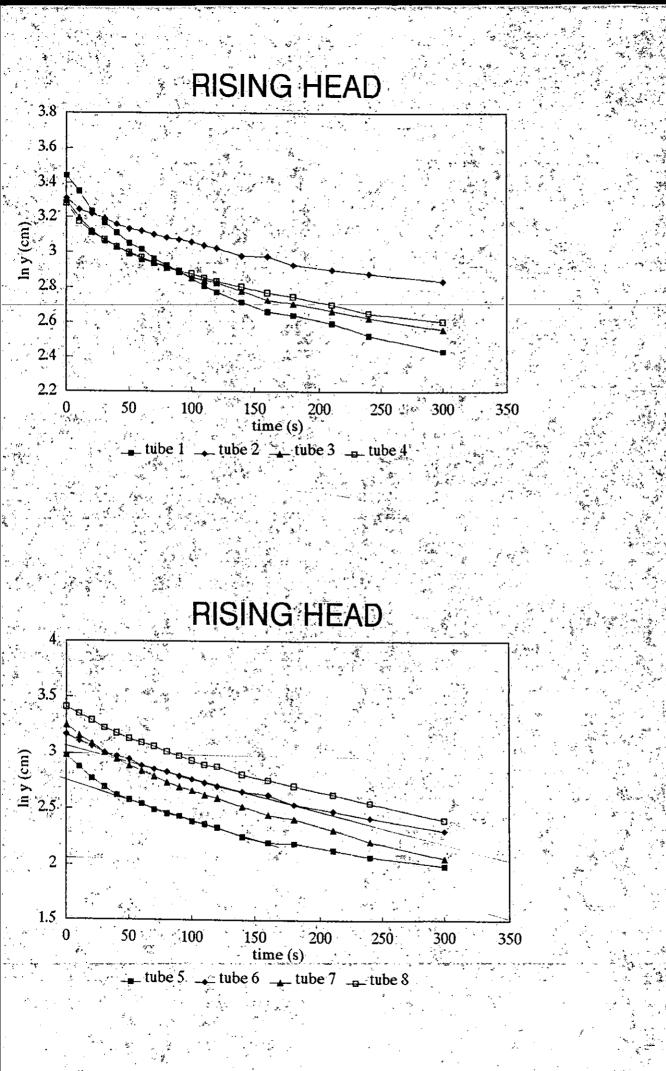
0,00371 0,00285

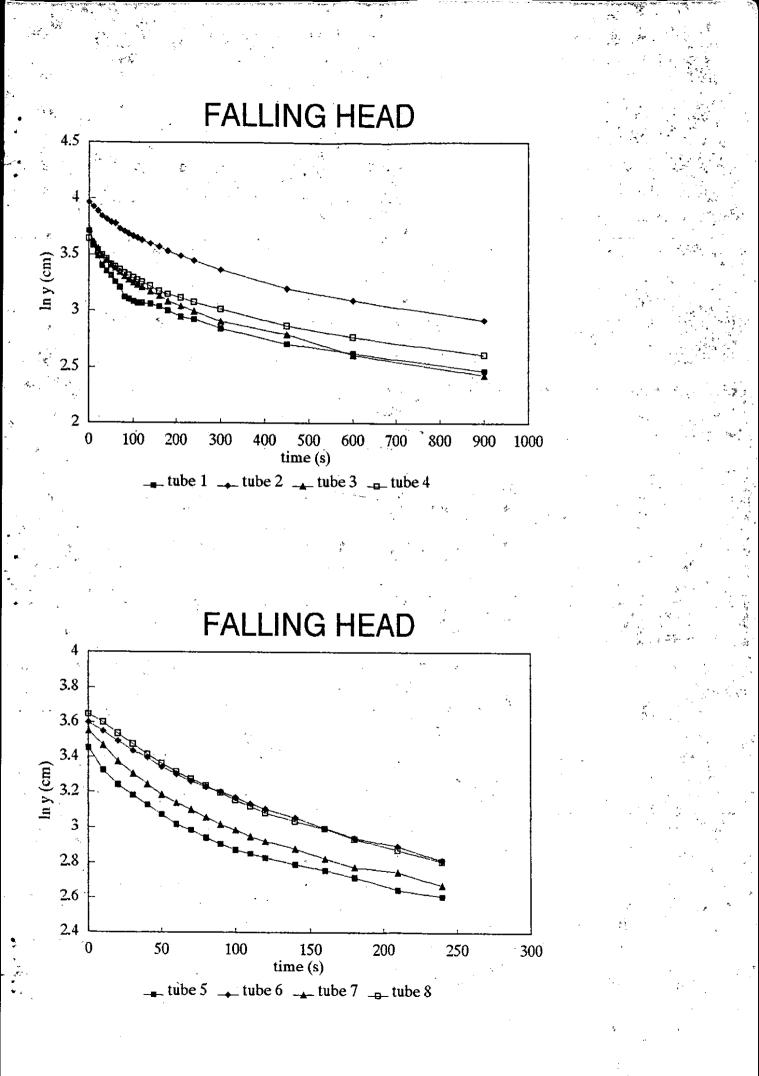
·90

## FALLING HEAD METHOD

a. Aire

• :


. DATA	(đ	late 14	-3-91.)		23		ય	
tube	•.	÷ .			44 . •			
perforat	1 1x20	2	,*** 3 	4	5	,6 11-0	7	, 8
wat lev	79.1	1x10 83.8	2x20	2x10	1x20	1x10	2x20	2x10
WELC IEV		03.01	83.9	83.1	79.1	76.2	75.8	71.2
time(s) y'	(cm) y'	(cm) y	(cm) v'	(cm) v'	(ຕໍ່ໜຶ່ງ ນາໄ	(cm) y'	(cm) y	(am)
0	38.2	31	42.5	45	47.5	39.6	41	' (cm) 33
10	43	33.2	46.8	47.3	51.3	41.5	43.7	34.7
20	46.5	35.1	49	49	53.5	43.3	46.5	36.9
30	49.1	37	51.2	50.2	55	45.1	48.5	38.9
-40	50.5	38.4	52.3	51.3	56.3	46.3	50.1	40.7
50 ·	51.6	39.7	53.5	52.9	57.5,	47.9	51.6	42.3
60	53.1	40.1	54.6	53.4	58.6	49	52.7	43.6
· 70.	54.4	42	55.5	54.1	59.3	50.1	53.6	44.7
80	56.4	43.1	56.5	55.1	60.1	50.9	54.5	45.7
- 90 ^w	56.8	44.1	57.4	55.6	60.8	51.6	55.3	46.7
100	57.2	44.8	58.1	56.2	61.4	52.4	56	47.7
110	57 <b>.</b> 5	45.3	58.6	56.6		53.2	56.7	48.6
120	57.5	46.1	. 59 🤺	57.1	62.2	53.9	57.2	49.4
140	57.7	47.3	60	58.1	62.8	55	58	50.4
160	58.2	48.3	61	59.1	63.4	56 <b>.</b> 2 [`]	59	51.3
180	59	49.6		59.8	64	57.3	59.8	52.4
210	60	51	62.9	60.6	65	58.1	60.2°	53.5
240		52.4	63.9		65.5	59.5	-61.3	54.6
-300	61.9	54.9	65.6	62.7	66.3 ,	60.3	62.8	57
450	64.1	59.3	67.6	65.5	68.1	63.5	64.7	58.6
600	65.3	61.7	70.3	67.2	69.4	65.3	66.2	61.5
900		65.3	72.5	69.5 🊈 🍕	* ·	.67.6	68.1	62.5
	.69.2	68.1	- 74		~ 72	69.1	69.4 🦯	63.5
	70.1	70	75.5	72.3	72.7	69.8		64.4
2100	71	72.6	77.5	74.2 ^{*.}	74	71 · _	71.6	65.5
2700	72.5	74.3	78.1	75.4	74.3	64.5	72.2	66.1
3600	73.6	76.5	79.2	76.7	74.8	67.9	73	66.9
.5400	74.7	79	80.2	78.4	75.6	69. <u>9</u>		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
7200 9000	76	80	80.7	79.1	- '		7	
	76.5	80.8	81.3		ŕ	٢	۰ د .	
10800	76.6				**	, ,		
								3
CALCULATIO	NS .		-4			-		
·	14			-		3.		5
tube	. 1	. 2	· 3	4	5	6	7	· · · · <b>8</b> · · · · ·
perforat	1x20	1x10	2x20	2x10	1x20	1x10	2x20	2x10
r (cm)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Lcav (cm	20	10	20	10	20	10	20	.10
shapef.	49	31	49	31	49	31	49	31
ln(y)/t 0.0				00115 0-	00497 0	00287	0.004 (	
k (m/d) 0.:	12377 0.	08893 0.	15147 0.	15733 0.	43017 0	39265 0	34622 0	45148
1								


91

÷

e

*







APPPENDIX 17 DATA, CALCULATIONS AND GRAPHS OF PIEZOMETER TEST

							·.	-	
CONSTANT HEAD		• •				*	,	с ⁵ н.	
			, M		•		(	a -	
date	03-05	-91 (pi	azomet	-erg 7-	-9 to '	2-12)	÷.		
		-91 (pi							. ' %.
							2-13 to	arte, si a. Nastria	
	00 00				••••••••••••••••••••••••••••••••••••••				
location K-900	4	لېنې د د. د د د م	*- ·					· • · · · · ·	
		· •	· • •		, <del>.</del>		. *		
number	2-1	2-2	2-3	2-4	2-5	2-6	2-7		÷.,
filterlenght (m)	0.2			0.1					
perforation percentage	10						20		
'imposed head y0 (m)	0.03			0.05					200
internal diameter (m)	0.021	0.021	0.021	0.021	0.021	0.021	0.021	د در د ارژ راهنماری از مح	
shape factor S	0.31	0.16	0.31	0'.16	0.31	0.16	0.31	الم الم الم الم الم الم الم الم الم	
		5	-		•		, ¥		£
waterlevel vessel t1 (cm	) 17.4	ھ پر جاج					19.3		
waterlevel vessel t2 (cm							15.5		
time difference (min)	158	5 A.		1090			1089		2.
Q infin (lx10E-3/s)	0,018	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.019	0.029	0.004	0.011	0.020	and the second	
		, i i						in engrin i zir.	· ·
hydr. cond. k (m/day)	0.18	÷.\$	0.03	0.31	0.01	0.06	0.04		•
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ه م. •	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	、				i i i i i i i i i i i i i i i i i i i	
number	2-0	20	[~]	0.111	0.10				•
filterlenght (m)	· · · · · · · · · · · · · · · · · · ·	2-9	. 2-10	2-11	2-12	. 2-13	2-14		it.
perforation percentage		0.2					ਾ 0.1∜ 10ੈ		÷ `
		0.12							1 y 1
internal diameter (m)							0.021,	5	• - ~
shape factor S							0.16		2
				0.01	0.10				
waterlevel vessel tl (cm)	21.9	17.1	10	12.2	13.2	18.2	19.8	nta diti Sistem dati	<i>*</i> -
waterlevel vessel t2 (cm)	) 15.1	15.1	4.8	· 9.1	7.4	16.5	18.2		
time difference (min)	. 1089	209	. 10	209	170	158	157-		
Q infin $(1x10E-3/s)$	0.036	0.056	3.033	0.087	0.199	0.063	0.059		÷ *
	S.					•	49 70		
hydr. cond. k (m/day)	0.18	0.13	10.13	0.21	1.06	0.19	0.71		
	x.		.5			ş.	<u>به در</u> 1	er Fate an	
· · · · · · · · · · · · · · · · · · ·									
number		2-16				2-14	3	с. 	•
filterlenght (m)	0.2	0.1		0.1		0.1	· ·		-
perforation percentage	20			20	. 10			- <b>1</b>	
imposed head y0 (m)	. 0.14			0.05			· · ·		
internal diameter (m) shape factor S		0.021			0.021		÷.	•	
smape factor 5	0.31	0.16		0.16	0.31	0.16	• •		
waterlevel vessel t1 (cm)	22 6	19.4		18	15.8	) 19	,		, <b>.</b> ·
waterlevel vessel t2 (cm)				16			- ;	• • • •	-
time difference (min)	156	157		65	72	72	,		
Q infin $(1x10E-3/s)$		0.022			0.308		•	* 4 ₂ . ·	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			4 ·		5.000	0.1 I UU	•	, .	
hydr. cond. k (m/day)	0.00	0.09		1.95	0.58	1.70			
· • ·			•				14 . 1	• *	
• , *		e ···	er		-		· ·		

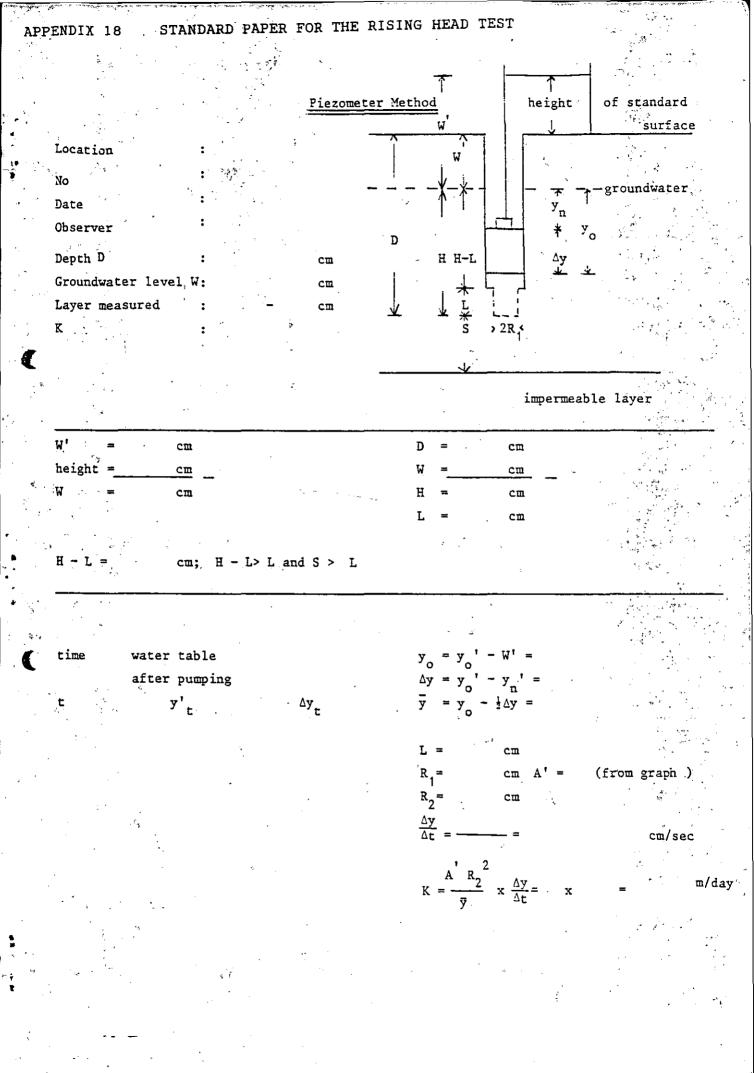
NG HEAD METHOD

A' bij 20 cm filter	57		97 - 10 17	
A! bij 10 cm filter	88			
			a	
piezomete 2/1	piezomete 2,	/4'	ete 2/7	
start lev > 36.4	start lev 40		lev 43	
time level	time leve		me level	
0 111.5	0	91	0 86	
167 106.5			83 63	in a subscript of the second
405 101.5	부험로	· · · ·	46 56	
730 96.5	456 74			
977 93	588 70		t= 0.067	
	e waa 20		k= 0.231	
N L L L L L L L L L L L L L L L L L L L	dy/dt= 0.0			
dy/dt= 0.015		30 35 2		an a
k= 0.024		5	and the second second	W
		£		
n an				

**************************************	0.024			\$.	المواجعة ويترج والمحاج و
			*	and the second secon	
1	ing the state of the		· •		
piezomete	2/2	piezomete	2/5	piezomet	e 2/8
start lev	35.5	start lev			v. 41.2
time		time	·		level
. 0	113.7	0			
2 <b>2.77</b> ⊧``	107.5	265	- 102	271	
520	103.5	533		497	
802 5	99.5	946		809	
1036		1209	75		64 °
1680		k(0-533)			
k(0-1680)		dy/dt=	0.043		0.028
dy/dt=		k=	0.070		0.143
k=	0.032		<u>_</u>	· · · · · · · · · · · · · · · · · · ·	0.143
و المحمور المراجع المحمد ال	С.С. <u>Д</u>	in the second	а. н		
		A STATISTICS		and the second second second	
			* *		

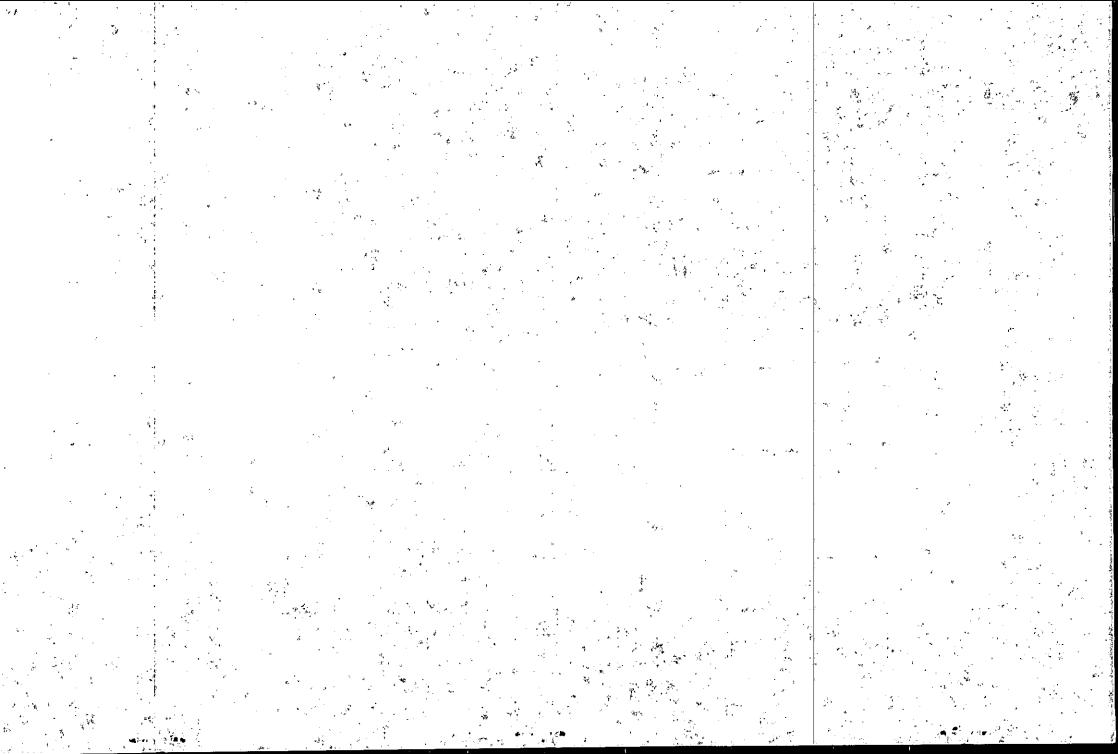
piezomete 2/3	piezomete	2/6	👘 piezomete 👘	2/9
start lev 43.2	start lev	41.7	start lev	37.5
time level	time	level		
0 107.4	0	0	2. · · · · · · · · · · · · · · · · · · ·	104 5
157 101	377	377		96
341 94.6	577		309	
513. 91			634	
758 87		1613		
1115 83	k(0-1613)		1678	
1642 77.2	dy/dt=		k(0−634)•	
. 2224 72			dy/dt=	
k(0-513)		<b>0.111</b> 7		
$dy/dt = 0.032^{\circ}$		** **	<b>K</b> -	0.075
	at the	•		Ť

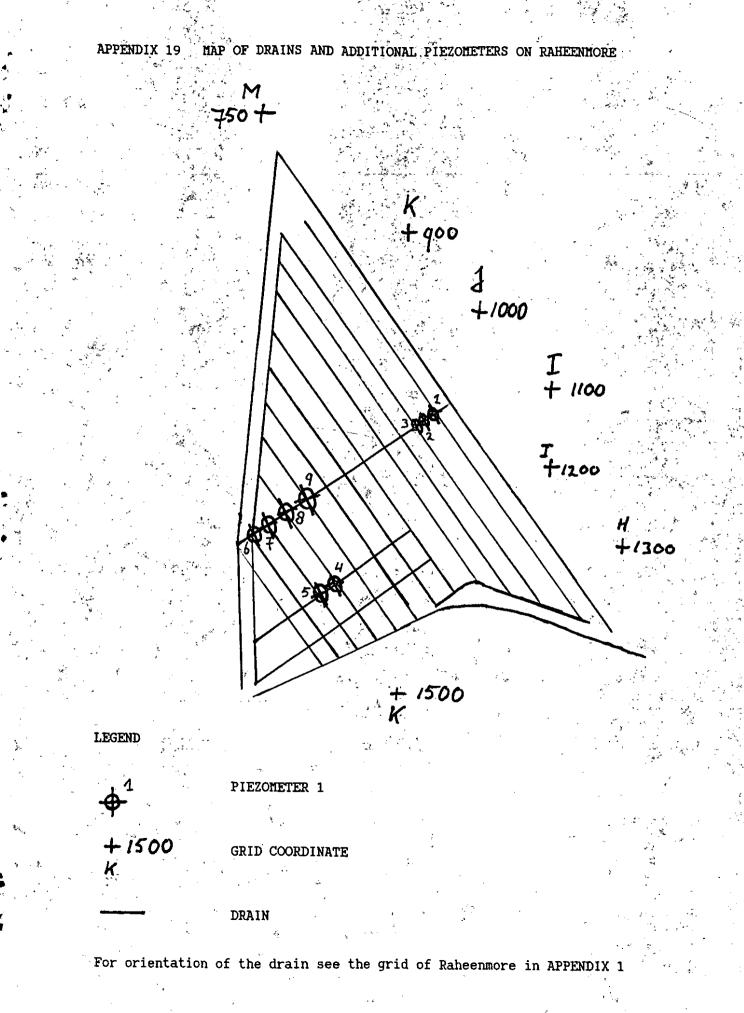
## RISING HEAD METHOD (2)


34		· · · ·			
piezomete	2/10	piezomete	2/13	piezomete	2/16
start l'ev		start lev		start lev	41.5
time	level	time	level	time	level 🖗
0	96	0	93		105
46	82	.126	74	人物 ふだんしかく トバー・モー	95
101	71	184		149	
188	58	310	69		90.7
k(0-188)			63	365	86.5
	0.202	k(0-184)		533	82
. k=	0.802	dy/dt=	0.130	615	78.3
	0.002	k=	0.387-		73
	2.			k(0-615)	· · · · ·
L.				/dý/dt=	0.043
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·			k=	0.129 ,
Diogenete	0.411	,			• •
piezomete		piezomete	<u> </u>		
start lev	44	start lev	45.5		
time	level.		level		
0	105.8	. 0 - 1	110		
128	99.5	22	100	•	
286	93	47	95	··· 、 ·	er 196 196 - 196
973	78	112	78	х 421 г. Х	
1117 -	75	191	- 66		
k(0-1117)		k(0-112)	and the second se	· · · ·	
dy/dt=	0.028	dy/dt=	0.286	4. ⁴	
• k=	0.057	k=	0.876	1. A.	
		~¥ .			
			4	·	
piezomete		piezomete			
start lev		start lev	50 · −+j		<u>,</u> 1
time	level	👘 time 🛵	level		म् र स्थित है
<u>,</u> 0	90 👘 "	· · · · 0 ·	ું દે -118 👘		, e k
103	74.8	213	115		
282	61	168 -	- 113		
k(0-282)		331	111	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	1. P
dy/dt=	0.103	952	105.6		
k≃	0.439	1109	100		
· ·	1	1846	93.5		ч т., т. "С. т. 4
*	· ·	k(0-712)			
· · · ·	·	dy/dt=	0.010	• • • •	
.e.		k=	0.015		
-	•	·. ,	-		•
		· · · ·		•	

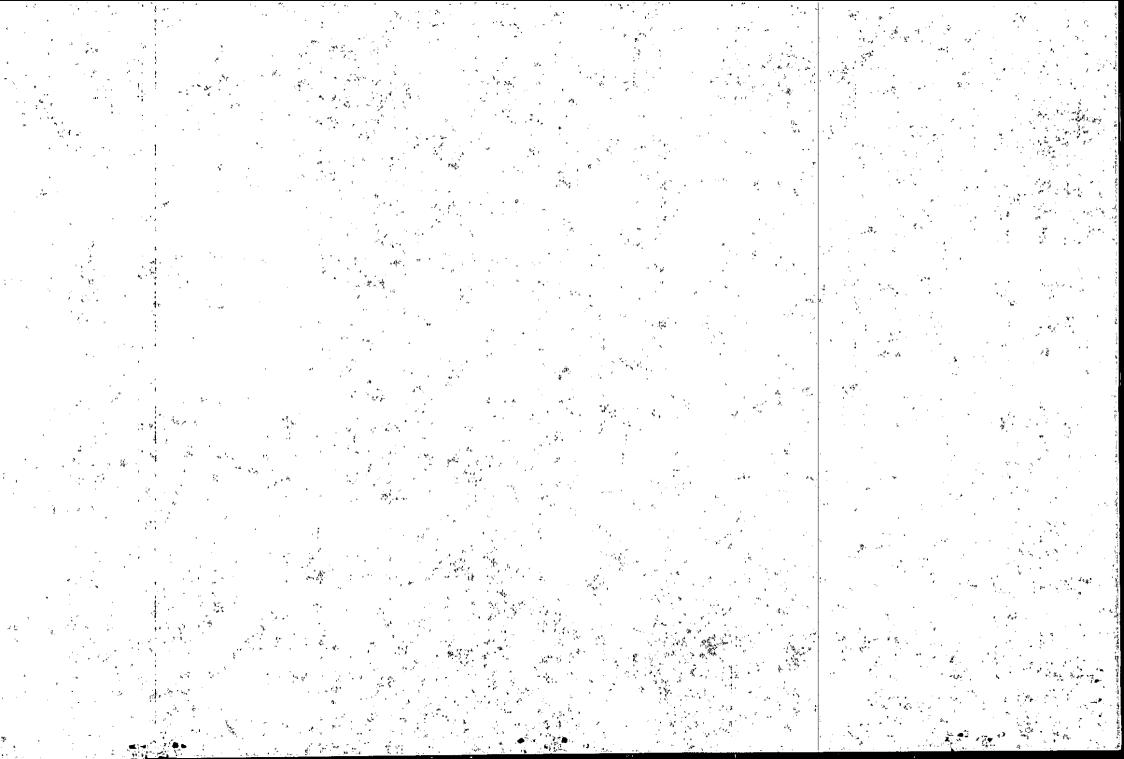
FALLING HEAD METHOD

J.


A' bij 20 c	m filter	57		· · · · ·	
_A'_bij_10_c	m filter	88	14 - Sec.		
				*	
piezomete	2/1	piezomete	2/4	piezomete	2/7
start lev	92.5	start lev	90	start lev	91 🦼
time	level	time	level	time	level
5	63	0	64	0	
13	65	5	65, :	5	54
* 18-	; :i i, <b>66</b> . [€] `	10	66	20	60
24	67	24	67	24	61
<u>,</u> 30 *		41 🤤	68	29	62
. 41	.69	- 60,5	69	33 37	63
69	70	94	~ 70		64
87	71	136.5	71	44	65
106	7.1.5	193.	72 👘	·•51	66
125	<u>.</u>	269	73	. 61	67
K(5−41)	in the second	k(0-60.5)		69	68
dy/dt=	0.167	∕`dy/dt=	0.083	80 11	69
k=	0.606	* k=	0.523	92,	70
				k(0−44)	
piezomete				dy/dt=	0.341
start lev		piezometé	2/5	r, ∕ → <b>k</b> = .	0. 980. 🖓 🗤
time	level	start lev	^{~~~} 90 _		A STATE
0	.≟. ( <b>)* 52</b> € ⊂.	. 📜 time	level	piezomete	2/8
6	54	0	.62 ~	start lev	92.5
<b>0 ≠ - 17</b> ^	56		64	. time	level
31	58	15	65	0	64
63	60	20	y 66 ·	5.5	65,÷_`
80	· 61 · ·	23.5	67	13	66
108	62	- 38	68 🐪	24	67
150	63	- s · 51	, 69	38	_68
199	. 64	66	70	53.5	69
253	<u>.</u> 65 j	.86	71	<b>77</b> ., 1	70
୍ତି <u>ସୁ</u> 339	<u> </u>	k(0-23.5)		110	71
k(0-63)		dy/dt=		k(0−53.5)	
dy/dt=	0.127	i in trik≓i	0.804	dy/dt=	0.093
k=	0.590			k=	0.535
			ter ter	Br. with the state	and the second sec
piezomete	2/3	piezomete	2/6	piezomete	2/15
start lev	92.5	start lev	93.3	🔄 🔩 start lev	9 <u>9</u> .5
• time	level	time	level	time	level
i i i i i i i i i i i i i i i i i i i	ິ <u>້</u> 68	* í*í5	71	in <b>(0)</b>	65
6	70	12	··· 72 -	5	66
14	71	21	73 ′	9.5	67
24.5	72	33	74	. 17	68,
39.5	73		75	25 、	69
59	<i>⊪₂</i> . 74.	72	76	34	70 -
89	75	102	77	52	· 71 · · ·
122	76	k(0-51)	- <u>-</u>	<b>*</b> 68	72
k(0-39.5)	1	dy/dt=	0.087	1. A. A. 93 A	73.
dy/dt=	0.127	k= 1	0.637	k(0-34)	
	0.554	terre and the second	دهره رئيستر مورد ا ا	dy/dt=	
(			جبر جبر		0.443


. •




***

•





*4



**#**}

ه

a . . •

Ŧ

. 1

:

. *.* 

4 6 . . .

6-e 📌 🦕

.