AGP 90/2
Preliminary report on Schlumberger resistivity soundings at Clara and Raheenmore bogs, Co Offaly.

by

M. Smyth, A. Farenhorst\(^1\) and K.J. Barton

\(^1\) Fysisch Geografisch en Bodemkundig Laboratorium, Universiteit van Amsterdam, The Netherlands.

Applied Geophysics Unit,
University College,
Galway,
Ireland.

April 1990.
Contents

1 Introduction .. 1
2 Data Acquisition ... 2
3 Data Reduction and Processing 6
4 Interpretation .. 7
 4.1 Raheenmore .. 7
 4.2 Clara ... 10
5 Conclusions ... 12
 5.1 Raheenmore .. 12
 5.2 Clara ... 12
6 Recommendations .. 13
 A Raheenmore Calculated Apparent Resistivities 16
 B Clara Calculated Apparent Resistivities 31
 C Raheenmore Interpreted Resistivity Sounding Curves 42
 D Clara Interpreted Resistivity Sounding Curves 57
List of Figures

2.1 Location map for Schlumberger resistivity soundings at Raheenmore Bog 3
2.2 Location map for Schlumberger resistivity soundings at Clara Bog 5
4.1 Summary Geological Section at Raheenmore Bog ... 8
4.2 Summary Geological Section at Clara Bog ... 11
6.1 Suggested Locations for further Schlumberger Soundings at Raheenmore 14

A.1 Apparent Resistivity Data for RHSVES01 ... 17
A.2 Apparent Resistivity Data for RHSVES02 ... 18
A.3 Apparent Resistivity Data for RHSVES03 ... 19
A.4 Apparent Resistivity Data for RHSVES04 ... 20
A.5 Apparent Resistivity Data for RHSVES05 ... 21
A.6 Apparent Resistivity Data for RHSVES06 ... 22
A.7 Apparent Resistivity Data for RHSVES07 ... 23
A.8 Apparent Resistivity Data for RHSVES08 ... 24
A.9 Apparent Resistivity Data for RHSVES09 ... 25
A.10 Apparent Resistivity Data for RHSVES10 ... 26
A.11 Apparent Resistivity Data for RHSVES11 ... 27
A.12 Apparent Resistivity Data for RHSVES12 ... 28
A.13 Apparent Resistivity Data for RHSVES13 ... 29
A.14 Apparent Resistivity Data for RHSVES14 ... 30

B.1 Apparent Resistivity Data for CLSVES01 ... 32
B.2 Apparent Resistivity Data for CLSVES02 ... 33
B.3 Apparent Resistivity Data for CLSVES03 ... 34
B.4 Apparent Resistivity Data for CLSVES04 ... 35
B.5 Apparent Resistivity Data for CLSVES05 ... 36
B.6 Apparent Resistivity Data for CLSVES06 ... 37
B.7 Apparent Resistivity Data for CLSVES07 ... 38
B.8 Apparent Resistivity Data for CLSVES08 ... 39
B.9 Apparent Resistivity Data for CLSVES09 ... 40
B.10 Apparent Resistivity Data for CLSVES10 ... 41

C.1 Interpreted Resistivity Sounding Curve for RHSVES01 ... 43
C.2 Interpreted Resistivity Sounding Curve for RHSVES02 ... 44
C.3 Interpreted Resistivity Sounding Curve for RHSVES03 ... 45
C.4 Interpreted Resistivity Sounding Curve for RHSVES04 ... 46
C.5 Interpreted Resistivity Sounding Curve for RHSVES05 ... 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.6</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES06</td>
<td>48</td>
</tr>
<tr>
<td>C.7</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES07</td>
<td>49</td>
</tr>
<tr>
<td>C.8</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES08</td>
<td>50</td>
</tr>
<tr>
<td>C.9</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES09</td>
<td>51</td>
</tr>
<tr>
<td>C.10</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES10</td>
<td>52</td>
</tr>
<tr>
<td>C.11</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES11</td>
<td>53</td>
</tr>
<tr>
<td>C.12</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES12</td>
<td>54</td>
</tr>
<tr>
<td>C.13</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES13</td>
<td>55</td>
</tr>
<tr>
<td>C.14</td>
<td>Interpreted Resistivity Sounding Curve for RHSVES14</td>
<td>56</td>
</tr>
<tr>
<td>D.1</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES01</td>
<td>58</td>
</tr>
<tr>
<td>D.2</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES02</td>
<td>59</td>
</tr>
<tr>
<td>D.3</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES03</td>
<td>60</td>
</tr>
<tr>
<td>D.4</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES04</td>
<td>61</td>
</tr>
<tr>
<td>D.5</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES05</td>
<td>62</td>
</tr>
<tr>
<td>D.6</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES06</td>
<td>63</td>
</tr>
<tr>
<td>D.7</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES07</td>
<td>64</td>
</tr>
<tr>
<td>D.8</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES08</td>
<td>65</td>
</tr>
<tr>
<td>D.9</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES09</td>
<td>66</td>
</tr>
<tr>
<td>D.10</td>
<td>Interpreted Resistivity Sounding Curve for CLSVES10</td>
<td>67</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

This report concerns geophysical reconnaissance surveys at Clara and Raheenmore bogs to determine the most appropriate methodology to be utilised in finding the depth to bedrock and the thickness and nature of the individual overlying layers. This information will be useful in providing controls on the spaceform of the bogs at Clara and Raheenmore.

It was decided to carry out Resistivity Vertical Electric Soundings (VES) using the Schlumberger array, the end to end separation of the current electrodes being a maximum of 1,000m apart, to ensure that bedrock could be determined.

The technique was used largely at Raheenmore where fourteen soundings were carried out, chiefly along two traverses covering a wide geographical area, but also on land at the margin of the bog, to determine the depth of bedrock around the edge of the bog.

At Clara work was restricted to a short traverse of four soundings parallel to the main road, four short-length soundings on an esker to the north of the bog, and two soundings on a ridge west of the soak, at the southern edge of the bog.

The interpretations contained in this report are based on "quick-look" methods using a computer interpretation package. The depth to bedrock and apparent resistivities quoted are likely to be modified when a more rigorous interpretation has been carried out, however relative depths to bedrock between soundings are likely to be accurate. It should be noted that all depths are referred to ground level since no topographic data were available at time of survey.

The interpretation of the nature of peat and sediments overlying the bedrock is likely to be altered in the light of future geological and geophysical surveys.
Chapter 2

Data Acquisition

The Schlumberger soundings were carried out using AB/2 spacings suitable for use in a computer interpretation program. The AB/2 spacings used can be seen in Appendices A and B.

The resistivity instrument used was an ABEM SAS 300 Terrameter with a current output setting of usually 10mA. The AB/2 distances were marked on each cable and this saved a lot of time in surveying in the electrode positions. Radiotelephones were used for communications. Schlumberger sounding numbers for Raheenmore and Clara bogs are prefixed RHS and CLS respectively.

At Raheenmore the soundings were carried out at 200m intervals along two traverse lines approximately 600m apart running North-West to South-East relative to the National Grid (see Fig 2.1). Since no grid had been provided, these lines were laid so as to use traverse lines used in the EM-34 Survey where possible. The centre of each sounding was marked by a bamboo cane with five red horizontal stripes so as these locations can be reoccupied at a later date. These traverse lines largely occupy the central zone of the bog. The National Grid References for the centres of the soundings at Raheenmore bog are given in the table below.

<table>
<thead>
<tr>
<th>Sounding RHSVES</th>
<th>Easting (m)</th>
<th>Northing (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>243890</td>
<td>232400</td>
<td>Bog</td>
</tr>
<tr>
<td>03</td>
<td>244020</td>
<td>232050</td>
<td>Bog</td>
</tr>
<tr>
<td>04</td>
<td>244140</td>
<td>232080</td>
<td>Bog</td>
</tr>
<tr>
<td>05</td>
<td>244230</td>
<td>231960</td>
<td>Bog</td>
</tr>
<tr>
<td>06</td>
<td>243810</td>
<td>231440</td>
<td>Farmland</td>
</tr>
<tr>
<td>07</td>
<td>243790</td>
<td>232530</td>
<td>Bog margin</td>
</tr>
<tr>
<td>08</td>
<td>243420</td>
<td>232510</td>
<td>Farmland</td>
</tr>
<tr>
<td>09</td>
<td>243280</td>
<td>232240</td>
<td>Bog</td>
</tr>
<tr>
<td>10</td>
<td>243370</td>
<td>232060</td>
<td>Bog</td>
</tr>
<tr>
<td>12</td>
<td>243470</td>
<td>231880</td>
<td>Bog</td>
</tr>
<tr>
<td>13</td>
<td>243570</td>
<td>231710</td>
<td>Bog</td>
</tr>
<tr>
<td>14</td>
<td>243670</td>
<td>231540</td>
<td>Bog</td>
</tr>
</tbody>
</table>
Figure 2.1: Location map for Schlumberger resistivity soundings at Raheenmore Bog
At Clara bog four Schlumberger soundings were taken at 300m intervals along a line running South (see Fig 2.2), parallel to the main road. Four other short soundings were taken parallel to each other, at 40m intervals on an esker to the north of the bog, and two soundings were taken across the longitudinal axis of the ridge near the soak. All of the above soundings utilised the EM-34 survey lines which were already marked on the bog. The survey lines on Clara, although restricted in number, covered a variety of topographical areas in order to assess the diversity of Clara bog in relation to Raheenmore. The National Grid References for the centres of the soundings at Clara bog are given in the table below.

<table>
<thead>
<tr>
<th>Sounding CLSVES</th>
<th>Easting (m)</th>
<th>Northing (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>224800</td>
<td>230530</td>
<td>Bog</td>
</tr>
<tr>
<td>03</td>
<td>224710</td>
<td>230250</td>
<td>Bog</td>
</tr>
<tr>
<td>04</td>
<td>224620</td>
<td>229960</td>
<td>Bog</td>
</tr>
<tr>
<td>05</td>
<td>224240</td>
<td>230970</td>
<td>Esker</td>
</tr>
<tr>
<td>06</td>
<td>224250</td>
<td>230920</td>
<td>Esker</td>
</tr>
<tr>
<td>07</td>
<td>224250</td>
<td>330890</td>
<td>Bog margin</td>
</tr>
<tr>
<td>08</td>
<td>224260</td>
<td>230860</td>
<td>Bog</td>
</tr>
<tr>
<td>09</td>
<td>223960</td>
<td>229960</td>
<td>Ridge</td>
</tr>
<tr>
<td>10</td>
<td>223720</td>
<td>230000</td>
<td>Ridge</td>
</tr>
</tbody>
</table>

To assess whether the subsurface resistivity distribution was anisotropic an additional sounding was carried out at certain locations with the array being rotated through 90 degrees. At Raheenmore soundings RHSVES01 and 02, and RHSVES10 and 11, share the same centres. At Clara soundings CLSVES02 and 03 share the same centre.

This work was largely carried out by two people, with two soundings being carried out each day.
Chapter 3

Data Reduction and Processing

First stage field data reduction used a computer program written in the Lotus environment and implemented on the computer at the Clara field office. The calculated results can be found in Appendices A and B. The second stage was to input the AB/2 spacings and calculated apparent resistivities to an interpretation program called Resint (version 3.1) written by D.T. Biewinga and also implemented on the computer at Clara. This program allows smoothing of the vertical electric sounding curves and then interactive and automatic calculation of layer thicknesses and apparent resistivities which may give rise to the measured Vertical Electric Sounding curve. All twenty four curves were processed in this way and the results are given in Appendices C and D.
Chapter 4

Interpretation

4.1 Raheenmore

At soundings RHSVES07 and RHSVES08 which are located at the northern edge of the bog, it can be seen that bedrock appears to be quite deep at approximately 50m and 70m below ground level for each sounding respectively (see fig4.1). This is interesting since outcrop can be found at or near the surface some 1000m west of sounding RHSVES08. For both soundings the layers above the bedrock have similar resistivities of about 180 ohm-m. This could be represented by saturated gravel-tills. In the case of sounding 08 this layer is 46m thick, while it is 60m thick at sounding 07, which is located just within the limits of the bog. There is an upper layer resistivity of 40-70 ohm-m seen in both soundings, which could be represented by clay. This is at the surface at RHSVES08 and at a depth of approximately 5.5m at 07. The surface layer in the latter has an apparent resistivity of about 135 ohm-m which is likely to be due to less saturated peat.

Along the Easterly traverse(RHSVES01,03,04), the bedrock profile appears to form a dome shape in the centre of the bog, and then shoals to 1.2m at RHSVES05.

The peat layers in the centre of the bog vary accordingly, with the deepest peat layer of 25m at RHSVES04 where bedrock is at a depth of 63m. At RHSVES01 and 03 the peat layers are at shallower depths of 6.3m and 15.5m respectively, which correspond to the shallower depth of the crest of the dome shaped bedrock at a depth of approximately 40m. The pattern of associated shallow peat layer with shallow depths of bedrock is also evident at RHSVES05 where the bedrock is found at a depth of just below 1m, resulting in a very thin top layer of peat.

At soundings RHSVES07,01,03 and 04 where four layers are evident, all show the second layer from the surface to be approximately 3m in thickness, even though the depth of this layer varies from 6m to 25m at the respective sounding locations.

The layer above the bedrock is thickest where bedrock is deepest. At sounding RHSVES07 this layer is approximately 60m thick going from a depth of 9m to 69m, while at soundings RHSVES01,03 and 04 this layer shows in thicknesses of 30m, 23m and 35m, and extends from depths of 10m to 40m, 20m to 43m, and 28m to 63m respectively.

The layer above the bedrock has the highest resistivity of 181 ohm-m at sounding RHSVES07, where it is thickest, and the lowest resistivity of 61 ohm-m at sounding RHSVES03 where it is thinnest. The resistivity of this layer at RHSVES01 and RHSVES04 is similar at 81 ohm-m since both these layers have only a 5m variation in thickness. If this layer
Figure 4.1: Summary Geological Section at Raheenmore Bog
comprises of the same material at all locations then the variation in resistivity could be
due to clay content lowering the value, or gravels/cobbles raising the value.

The resistivity of the second layer above the bedrock is greatest at 66 ohm-m on
RHSVES07, which is probably due to the clay nature of this layer on the margin of the
bog. Similar resistivities of 45,51 and 54 ohm-m are recorded at soundings RHSVES01,03
and 04 respectively.

The resistivity of the surface layer of peat is approximately 170 ohm-m at soundings
RHSVES03 and 04 where the peat is thickest at 15m and 25m respectively. The resistivities
of 120 ohm-m and 135 ohm-m are recorded at soundings RHSVES01 and 07 respectively,
where peat is approximately 6m deep and slightly more saturated. The higher resistivity
of 236 ohm-m for the top layer is found at sounding RHSVES05 where the top layer is only
1.2m thick. This is probably due to the dryness of the peat close to the margin of the bog,
and also its closeness to the bedrock.

Soundings RHSVES06 which situated on farmland to the south of Raheenmore has
only one layer, less than 4m thick, above the bedrock. This layer’s low resistivity of 56
ohm-m is probably due to the loose gravelly clay nature of the soil in the field, which could
be saturated.

Bedrock depths along the Westerly traverse (soundings RHSVES09,10,12,13 and 14) are
relatively uniform, fluctuating above and below the 20m mark. At 12m bedrock is shallowest
on the Northern end at sounding RHSVES09, and deepest at sounding RHSVES10 where
it is at a depth of 24m. Bedrock depths of 19m,15m and 16m are relatively similar at
soundings RHSVES12,13 and 14 respectively.

Unlike the Easterly traverse, where four layers are standard, three layers appear to be
the norm along the Westerly traverse. The middle layer varies insignificantly in thickness
along soundings RHSVES10,12,13 and 14, being approximately 5m thick, and at depths
of approximately 19m, 14m, 10m and 11m respectively.

Sounding RHSVES09 only records two layers, the top peat layer being 12m thick. The
Westerly traverse also differs from Easterly traverse in that peat thickness in the former is
more uniform with a lower range of thickness varying between 10m and 19m. The resistivities
of the peat layers at soundings RHSVES10,12,13 and 14 are similar at approximately
190 ohm-m. The resistivity along sounding RHSVES09 is slightly lower at 145 ohm-m, which
could be due to increased saturation.

The resistivity of the middle layer is also relatively similar in soundings RHSVES10,12,13
and 14, ranging from 41 ohm-m to 52 ohm-m.

For soundings RHSVES01 and 02, and RHSVES10 and 11, which share the same cen-
tres, it can be seen that at large AB/2 spacings the curves are coincident. This would
indicate that the ground under investigation is homogeneous at depth. For shorter AB/2
spacings there is a degree of variability between the curves. This suggests lateral inhom-
ogeneity along the axes of the soundings at shallow depths. This feature can be attributed
to shallow lateral variation in the unconsolidated peat and till layers whilst the deeper
layers are more compacted lying on an homogeneous bedrock. A similar situation can be
seen in the two soundings from Clara which share the same centre, namely CLSVES02 and
03.
4.2 Clara

Soundings CLSVES01, 03 and 04, which run along the traverse parallel to the road, reveal a three layered structure (see fig. 4.2). Peat varies in thickness from 8m at sounding CLSVES04 to 14m at sounding CLSVES01 and 03. Resistivities for this layer are similar at soundings CLSVES01 and 03, being 152 ohm-m, but slightly higher at sounding CLSVES04 where it is about 170 ohm-m. The higher resistivity for the peat layer at soundings CLSVES04 is probably due to the fact that this line is close to the southern end of the bog where turf cutting is carried out, and thus resulting in the peat being less saturated.

The layer above the bedrock is found at depths of 15m, 14m and 8m at soundings 01, 03 and 04 respectively. This layer is quite thin at sounding CLSVES03 where it is only 2m thick, but is twice this thickness at soundings CLSVES01 and 04 where it is 4m and 5m, respectively. The resistivity for this layer ranges from 22 and 34 ohm-m for soundings CLSVES04 and 01 respectively, to 85 ohm-m for sounding CLSVES03 where this layer is thinnest.

CLSVES05 and 06 which were surveyed on the slope of the esker, show bedrock to be at depths of 7m and 14m respectively. Bedrock on the margin of the bog, at the base of the esker (CLSVES07) gets shallower in relation to the ground surface as it rises to 9m, but then drops once more at CLSVES08 to a depth of 15m. The summary section for the depth of bedrock along the lines surveyed on the esker seem to suggest that the bedrock surface is undulating beneath the overburden, however if the estimated height of the ground surface is taken into account at each of the respective soundings, then this shows that the bedrock slopes gently downwards towards the bog since the ground surface varies in height by about 10m along the survey soundings from CLSVES06 to 08.

Soundings CLSVES09 and 10 show bedrock to be at depths of approximately 12m and 9m respectively. Since the ground surface at sounding CLSVES09 is approximately 2m higher than that of CLSVES10, then the bedrock on the ridge is at a uniform depth along the longitudinal axis of the ridge. Sounding CLSVES09 shows only one layer of overburden approximately 12m thick, with a resistivity of 145 ohm-m comparable to that of the peat layers at the other survey soundings taken at Clara. The sounding at CLSVES10 shows two layers of overburden. The surface is very thin at only 2m thick, while the second layer has a thickness of 7m. The slight resistivity difference between the surface layer and the layer underneath of 123 and 175 ohm-m respectively, is likely to be due to the lighter spongy nature of the surface layer compared to the more compact nature of the peat in the layer underneath.
Figure 4.2: Summary Geological Section at Clara Bog
Chapter 5

Conclusions

At both Raheenmore and Clara, Vertical Electric Soundings using Schlumberger Array can successfully resolve depths to bedrock when using a maximum AB/2 distance of 500m. In some areas a maximum AB/2 distance of 200m would be capable of resolving bedrock.

5.1 Raheenmore

At Raheenmore the underlying bedrock varies considerably both in depth and general configuration. The maximum depth to bedrock is at approximately 70m, while the minimum depth is little more than 1m. The traverse to the East of Raheenmore shows the bedrock to be varying in depth from very shallow (1m) to very deep (70m). On the contrary, the Westerly traverse shows the bedrock to be a relatively horizontal layer with a smaller variation in depth of between 12 and 24m.

The variation in depth to bedrock between the western and eastern traverses, which are about 600m apart, might indicate a fault line somewhere between the two traverses. In addition the difference in depth to bedrock at the Northern end of the bog and outcrop occurring in the vicinity might also support the argument of faulting in the area.

5.2 Clara

The Clara bog area is much more diverse in nature in comparison to the compact Raheenmore bog, however the variation in the depths to bedrock is less in comparison to that at Raheenmore. At Clara, the soundings taken parallel to the road show bedrock to be at a maximum depth of 20m, while bedrock on the ridge near the soak at the Southern end of the bog, is at a maximum depth of 12m, and the maximum depth of bedrock on the esker at the Northern end of the bog, is at a depth of 15m. However this information is inadequate to build up a more complete general picture of the depth of bedrock at Clara due to the limited number of soundings taken on the bog. A survey covering a much larger geographical area is needed to more accurately quantify the spaceform of Clara bog.
Chapter 6

Recommendations

1) The height of the centres of all soundings should be levelled in to provide accurate data on the depth of each layer in relation to a common datum.

2) Where bedrock was found to be shallow (10-20m) it should be possible to use the offset Wenner Array (Barker Cable) which should speed up the time taken to collect data.

3) Using the same centres, the soundings made on the esker at Clara should be repeated using the Barker Cable to try and quantify the lateral errors likely to be due to a non-layered sequence and topographic effects.

4) Further soundings at Raheenmore bog using the Schlumberger Array should be made at the locations given in Fig 6.1. These will enable various hypothesis to be tested as to the nature of the changes in the depth of bedrock going from West to East, and also at the northern edge. Further soundings are also necessary at the Eastern margin and at various locations on the rim and outer reaches of the bog to quantify the depth to bedrock and nature of overburden.

5) At Clara further traverses are needed to map the nature of overburden and depth to bedrock. Use of the Barker Cable on this site may speed up surveying operations due to the shallower nature of the bedrock in Clara.

6) If a fault or faults are found to run in the vicinity of either bog then these could possibly be mapped using a combination of EM-VLF and EM-VLF-R and a series of trial traverses should be carried out to test the suitability of this method.

7) Where bedrock is less than 20m below ground level at the edge of the bog, a series of test co-linear dipole-dipole pseudosections could be carried out to provide information on the nature and attitude of sediments in these areas.

8) The establishment of a semi-permanent / permanent survey grid on both bogs would facilitate the setting out of survey lines and thus prevent time loss in continually having to lay out lines each time a different survey is carried out.

9) Co-ordinated levelling between the Hydrological and Geophysical projects would result in more comprehensive and efficient set of data being produced by the setting up of a network of height control points on each bog.

10) It would be preferable to have an extra person available when carrying out Vertical Electric Soundings as this would speed up data collection. In addition, a third person would be necessary for safety reasons when laying cables across roads, such as at Clara bog.

11) For correlation and calibration purposes, a Cobra deep overburden sampler could be used at certain sounding sites to collect continuous cores of overburden, down to bedrock.
This would be particularly useful in areas where conventional drilling techniques are impossible due to the weight of the drilling rig. A Cobra drill is available at U.C.G.
Appendix A

Raheenmore Calculated Apparent Resistivities
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>29.3000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>16.85</td>
<td>6.1900</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>1.3470</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>0.9650</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>2.8490</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>1.8630</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.1110</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.6600</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.4150</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>2.1900</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.3030</td>
</tr>
<tr>
<td>25.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>0.8280</td>
</tr>
<tr>
<td>30.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.5050</td>
</tr>
<tr>
<td>35.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.3180</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.85</td>
<td>1.4350</td>
</tr>
<tr>
<td>45.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>0.7800</td>
</tr>
<tr>
<td>50.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.4640</td>
</tr>
<tr>
<td>55.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.3100</td>
</tr>
<tr>
<td>60.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.1925</td>
</tr>
<tr>
<td>65.00</td>
<td>5.00</td>
<td>10.00</td>
<td>125.66</td>
<td>0.6900</td>
</tr>
<tr>
<td>70.00</td>
<td>5.00</td>
<td>10.00</td>
<td>235.62</td>
<td>0.3920</td>
</tr>
<tr>
<td>75.00</td>
<td>5.00</td>
<td>10.00</td>
<td>376.99</td>
<td>0.2710</td>
</tr>
<tr>
<td>80.00</td>
<td>5.00</td>
<td>10.00</td>
<td>549.78</td>
<td>0.2290</td>
</tr>
<tr>
<td>85.00</td>
<td>5.00</td>
<td>10.00</td>
<td>867.86</td>
<td>0.2030</td>
</tr>
<tr>
<td>90.00</td>
<td>5.00</td>
<td>10.00</td>
<td>1055.09</td>
<td>0.1281</td>
</tr>
<tr>
<td>95.00</td>
<td>5.00</td>
<td>10.00</td>
<td>251.33</td>
<td>0.5030</td>
</tr>
<tr>
<td>100.00</td>
<td>5.00</td>
<td>10.00</td>
<td>410.37</td>
<td>0.4850</td>
</tr>
<tr>
<td>105.00</td>
<td>5.00</td>
<td>10.00</td>
<td>753.98</td>
<td>0.2770</td>
</tr>
<tr>
<td>110.00</td>
<td>5.00</td>
<td>10.00</td>
<td>1195.77</td>
<td>0.2000</td>
</tr>
<tr>
<td>115.00</td>
<td>5.00</td>
<td>10.00</td>
<td>1735.75</td>
<td>0.1537</td>
</tr>
<tr>
<td>120.00</td>
<td>5.00</td>
<td>10.00</td>
<td>2375.87</td>
<td>0.1006</td>
</tr>
<tr>
<td>125.00</td>
<td>5.00</td>
<td>10.00</td>
<td>350.76</td>
<td>0.4050</td>
</tr>
<tr>
<td>130.00</td>
<td>5.00</td>
<td>10.00</td>
<td>820.74</td>
<td>0.3180</td>
</tr>
<tr>
<td>135.00</td>
<td>5.00</td>
<td>10.00</td>
<td>1139.81</td>
<td>0.2060</td>
</tr>
<tr>
<td>140.00</td>
<td>5.00</td>
<td>10.00</td>
<td>1507.96</td>
<td>0.1856</td>
</tr>
<tr>
<td>145.00</td>
<td>5.00</td>
<td>10.00</td>
<td>2391.54</td>
<td>0.1493</td>
</tr>
<tr>
<td>150.00</td>
<td>5.00</td>
<td>10.00</td>
<td>3471.46</td>
<td>0.1987</td>
</tr>
<tr>
<td>155.00</td>
<td>5.00</td>
<td>10.00</td>
<td>4747.73</td>
<td>0.1762</td>
</tr>
<tr>
<td>160.00</td>
<td>5.00</td>
<td>10.00</td>
<td>6220.35</td>
<td>0.1525</td>
</tr>
<tr>
<td>165.00</td>
<td>5.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2380</td>
</tr>
<tr>
<td>170.00</td>
<td>5.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.1925</td>
</tr>
<tr>
<td>175.00</td>
<td>5.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1337</td>
</tr>
</tbody>
</table>

Figure A.1: Apparent Resistivity Data for RHSVES01
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>62.29</td>
<td>26.1000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>9.4900</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.4600</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.3640</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>7.1100</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.8600</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.5180</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.9000</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.6040</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.0900</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.8640</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.2280</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.7600</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.4100</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.1500</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.0860</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.6730</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.4680</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.2740</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>0.9970</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.5570</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.3580</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.2320</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>887.96</td>
<td>0.1523</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.0921</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.3440</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.3410</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.1906</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.1382</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.0918</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.0785</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.2570</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.1562</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.1597</td>
</tr>
</tbody>
</table>

Figure A.2: Apparent Resistivity Data for RHSVES02
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>27.3000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>11.0600</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>4.0500</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.8460</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>8.2800</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.6100</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>2.1000</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.3390</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.8960</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>4.4200</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.8200</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.8460</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.1620</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.5860</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>3.1300</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.91</td>
<td>1.5730</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>186.50</td>
<td>0.9200</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.5950</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3050</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.2720</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.6200</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.3750</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.2510</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.1598</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.1037</td>
</tr>
<tr>
<td>50.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.5610</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.3380</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.2080</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.1475</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.0992</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.0756</td>
</tr>
<tr>
<td>225.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.2770</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.2210</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.1350</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.1310</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.1903</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.1712</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.0992</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.0756</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.1408</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2460</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.0736</td>
</tr>
</tbody>
</table>

Figure A.3: Apparent Resistivity Data for RHSVES03
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>22.7000 142.63 RHSVES04</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>6.6400 156.63 400 M. FROM</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>5.6700 181.59 RHSVES01</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.6530 105.65 COURSE 150 DEGR</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>7.5000 176.71</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>5.3000 181.43</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.8510 183.18</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.6980 108.55</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.5060 113.66</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.9100 184.25</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.4400 183.97</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.7170 188.79</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.0260 178.09</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.5430 168.88</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.8100 176.56</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.4410 169.76</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.8650 163.05</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.5680 156.14</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3010 146.94</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.2520 157.33</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.6320 148.91</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.3820 144.01</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.2600 142.94</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.1610 139.73</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.1027 159.71</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.5670 142.50</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.3140 128.86</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.2110 159.09</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.1642 196.35</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.1285 223.04</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2273.87</td>
<td>0.1046 248.81</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.3340 183.95</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.2640 216.88</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.2020 230.24</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.1805 272.19</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.1517 362.80</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.1525 529.40</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.75</td>
<td>0.1367 649.01</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.1036 844.43</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.1322 654.13</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1036 805.54</td>
</tr>
</tbody>
</table>

Figure A.4: Apparent Resistivity Data for RHSVES04
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>27.3000 171.53 RHSVES05</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>10.6700 201.12 550 M. FROM</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>4.1800 206.83 RHSVES01</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.7950 201.60 COURSE 150 DEGR</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>8.4400 198.86</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.6000 197.92</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.9750 195.45</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.1820 183.81</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.8140 182.34</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.9100 184.25</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.4200 182.46</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.6290 179.12</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.0360 179.82</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.6040 187.85</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.3900 181.58</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.6110 189.79</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.0910 205.65</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.8570 235.58</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.5910 292.43</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.8120 227.70</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>1.1980 282.27</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.8850 333.64</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.6990 384.30</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.5070 440.01</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.3460 538.06</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.4730 370.21</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.0750 440.33</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.7190 542.11</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.5140 614.63</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.3730 647.43</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.2840 674.18</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.0930 601.98</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.7980 554.95</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.6050 689.58</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.4450 671.04</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.3070 734.20</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.2660 923.41</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2300 1091.98</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.1646 1023.87</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2910 1097.04</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2070 1024.24</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1558 1211.41</td>
</tr>
</tbody>
</table>

Figure A.5: Apparent Resistivity Data for RHSVES05
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>Z(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>11.5300</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>2.9300</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>1.4530</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>0.6380</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>2.9600</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>1.7020</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.1580</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.8850</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.6980</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>2.4400</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.8120</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.76</td>
<td>1.4370</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.1380</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.8600</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.7800</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>2.0300</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.6470</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>1.4150</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.9090</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>2.9100</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>1.8630</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>1.4380</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>1.1660</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>947.86</td>
<td>0.9180</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.6560</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>2.3000</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.7880</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>1.2640</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.9000</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.6810</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.5160</td>
</tr>
<tr>
<td>200.00</td>
<td>20.00</td>
<td>40.00</td>
<td>3500.76</td>
<td>2.1400</td>
</tr>
<tr>
<td>225.00</td>
<td>20.00</td>
<td>40.00</td>
<td>5220.74</td>
<td>1.5890</td>
</tr>
<tr>
<td>250.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1139.81</td>
<td>1.1850</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1597.96</td>
<td>0.9750</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.34</td>
<td>0.6910</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.4790</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.3100</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.2290</td>
</tr>
<tr>
<td>450.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.3920</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2870</td>
</tr>
<tr>
<td>550.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1852</td>
</tr>
</tbody>
</table>

Figure A.6: Apparent Resistivity Data for RHSVES06
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>8.28</td>
<td>20.9000 131.32 RHSVES07</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>7.5300 141.94 EDGE DOG</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>2.6400 130.63 LINE 76 DEGR.</td>
</tr>
<tr>
<td>8.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.0560 118.60 TO 256 DEGR.</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>5.8000 136.66</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.1900 120.40 290 TO 150 M.</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.1750 116.28 CUT AWAY DOG</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.7030 110.10 2 M. DEEP</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.5150 115.68</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>2.6100 122.99</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.6080 121.24</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.1690 128.54</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.7440 129.14</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.4320 134.36</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.3000 144.51</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.3060 153.86</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.8330 157.02</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.6000 164.93</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3610 178.62</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.2890 161.98</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.7490 176.48</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.5010 188.87</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.3600 197.92</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.2460 213.49</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.1606 249.75</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.7590 190.76</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.5090 208.28</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.3280 247.31</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.2440 291.77</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.1893 328.57</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.1532 363.68</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.5180 285.29</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.3960 325.01</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.3150 359.04</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.2600 392.07</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.2070 495.05</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.1815 630.07</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.1651 763.85</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.1492 928.08</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2070 780.37</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.1886 933.19</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1597 1241.74</td>
</tr>
</tbody>
</table>

Figure A.7: Apparent Resistivity Data for RHSVES07
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>7.4000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>2.6600</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>1.1970</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>0.6550</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>25.56</td>
<td>2.4400</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>1.2960</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>0.8450</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.6270</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.4880</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>1.7150</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.2450</td>
</tr>
<tr>
<td>25.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>0.9580</td>
</tr>
<tr>
<td>30.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.6980</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>1.8760</td>
</tr>
<tr>
<td>50.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.2580</td>
</tr>
<tr>
<td>55.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.7790</td>
</tr>
<tr>
<td>60.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.5700</td>
</tr>
<tr>
<td>75.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3370</td>
</tr>
<tr>
<td>80.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.2130</td>
</tr>
<tr>
<td>100.0</td>
<td>10.00</td>
<td>20.00</td>
<td>235.82</td>
<td>0.7000</td>
</tr>
<tr>
<td>100.0</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.4760</td>
</tr>
<tr>
<td>100.0</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.3560</td>
</tr>
<tr>
<td>100.0</td>
<td>10.00</td>
<td>20.00</td>
<td>867.88</td>
<td>0.2620</td>
</tr>
<tr>
<td>100.0</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.1920</td>
</tr>
<tr>
<td>200.0</td>
<td>20.00</td>
<td>40.00</td>
<td>251.53</td>
<td>0.7320</td>
</tr>
<tr>
<td>250.0</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.5230</td>
</tr>
<tr>
<td>250.0</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.3710</td>
</tr>
<tr>
<td>250.0</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.2940</td>
</tr>
<tr>
<td>250.0</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.2470</td>
</tr>
<tr>
<td>250.0</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.2040</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.6380</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.5220</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.4320</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.3570</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.2520</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.2010</td>
</tr>
<tr>
<td>250.0</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.1656</td>
</tr>
<tr>
<td>250.0</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2030</td>
</tr>
<tr>
<td>400.0</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.1792</td>
</tr>
</tbody>
</table>

Figure A.8: Apparent Resistivity Data for RHSVES08
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>29.2000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>11.3300</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>4.4600</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.6920</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>8.4400</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.6500</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>88.96</td>
<td>1.8210</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.2700</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.9460</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>4.1900</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.5200</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.5810</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.0240</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.5540</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.9400</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.4520</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.8660</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.5680</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3250</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.2440</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.7030</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.4370</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.3200</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.2270</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.1750</td>
</tr>
<tr>
<td>80.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.6810</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.4740</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.3560</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.2860</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.2290</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.37</td>
<td>0.1731</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.5750</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.4560</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.3470</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.2900</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.3570</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.0778</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2790</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2690</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2330</td>
</tr>
</tbody>
</table>

Figure A.9: Apparent Resistivity Data for RHSVES09
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>27.9000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>9.7600</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.49</td>
<td>3.7300</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.6390</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>8.7800</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.7600</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.9750</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.2200</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.8290</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>4.3000</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.6700</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.7970</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.0870</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.6820</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>3.1800</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.6000</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.9450</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.6450</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3560</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.86</td>
<td>1.4490</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.8180</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.5780</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.4840</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.3540</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.4990</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.53</td>
<td>0.9690</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.7300</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.4880</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.7330</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.4080</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.3510</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.4450</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.8720</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.61</td>
<td>0.7290</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.5530</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.2990</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.3130</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2800</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.2400</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.3410</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2940</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.2320</td>
</tr>
</tbody>
</table>

Figure A.10: Apparent Resistivity Data for RHSVES10
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>29.4000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>10.5000</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.46</td>
<td>4.4100</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.9190</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>9.4200</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.9500</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>99.96</td>
<td>2.1500</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.4320</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.9830</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>4.4600</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.8100</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.9100</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>3.2700</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.6450</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>3.2700</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.7010</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.0610</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.7500</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.4820</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.46</td>
<td>1.6380</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.9990</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.7380</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.5940</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.4670</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.3760</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.2320</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.9550</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.7560</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.6250</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.4410</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.3800</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>559.76</td>
<td>1.2470</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.9820</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.6930</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.5510</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.3960</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.3370</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2700</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.2330</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.3590</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.3020</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.2410</td>
</tr>
</tbody>
</table>

Figure A.11: Apparent Resistivity Data for RHSVES11
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>25.7000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>9.9000</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.9800</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>4.1100</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>9.3300</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.1200</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>2.2700</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.4280</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.9620</td>
</tr>
<tr>
<td>16.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>4.6600</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.8800</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.9280</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.1890</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.6400</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.5100</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>0.5180</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.3710</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.3990</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.4860</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.6260</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.9870</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.7330</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.5860</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>887.86</td>
<td>0.2330</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.3870</td>
</tr>
<tr>
<td>80.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.53</td>
<td>0.5290</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.3790</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.8170</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.6670</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.7410</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.2860</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.3480</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>1.0290</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.7770</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.5850</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.4100</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.6220</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2920</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.2760</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.5880</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4946.01</td>
<td>0.7800</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.2410</td>
</tr>
</tbody>
</table>

Figure A.12: Apparent Resistivity Data for RHSVES12
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>28.7000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>10.1500</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.9400</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.7060</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>7.9400</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.4500</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.8460</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.1770</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.7950</td>
</tr>
<tr>
<td>3.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.7000</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.2600</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.5190</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.9760</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.5460</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.6700</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.4330</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.9420</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.6970</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.4730</td>
</tr>
<tr>
<td>35.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.4760</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.9580</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.7140</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.5680</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.6680</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.5380</td>
</tr>
<tr>
<td>80.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.1720</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.2350</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>1.0750</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.8770</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.6590</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.4910</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>350.76</td>
<td>1.7510</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>1.3110</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.7100</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.5110</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.3650</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.3600</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.5250</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.4020</td>
</tr>
</tbody>
</table>

Figure A.13: Apparent Resistivity Data for RHSVES13
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.70</td>
<td>1.00</td>
<td>6.22</td>
<td>28.2000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.70</td>
<td>1.00</td>
<td>18.85</td>
<td>10.0500</td>
</tr>
<tr>
<td>4.00</td>
<td>0.70</td>
<td>1.00</td>
<td>49.48</td>
<td>3.9500</td>
</tr>
<tr>
<td>6.00</td>
<td>0.70</td>
<td>1.00</td>
<td>112.31</td>
<td>1.7180</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>8.0800</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.4100</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.7690</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.0820</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.7210</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.8300</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.2700</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.5200</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.9170</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.5070</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>0.2590</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.3610</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.8940</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.6740</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.4300</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.4120</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.9090</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.6850</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.5210</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.4320</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.3260</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.1630</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.8860</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.6940</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.5540</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.1370</td>
</tr>
</tbody>
</table>

Figure A.14: Apparent Resistivity Data for RHSVES14
Appendix B

Clara Calculated Apparent Resistivities
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>22.3000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>8.2500</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.2800</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.4630</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>6.4600</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.8000</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.5800</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.9450</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.6240</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.5500</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.1100</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.3780</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.8180</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.4260</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.3100</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.2440</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.7020</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.5010</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.3190</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.1070</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.6650</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.4920</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.3880</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.3050</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.07</td>
<td>0.2130</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.8460</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.6400</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.4430</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.3290</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.2630</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.2210</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.7220</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.5650</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.4700</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.3970</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.2970</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.2360</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.1932</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.1587</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2450</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2820</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1420</td>
</tr>
</tbody>
</table>

Figure B.1: Apparent Resistivity Data for CLSVES01
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>24.5000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>8.8200</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.6100</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.5070</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>7.1600</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.73</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.3670</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.9850</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.7190</td>
</tr>
<tr>
<td>16.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.1000</td>
</tr>
<tr>
<td>30.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.0800</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.4790</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.1600</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.6820</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.8700</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.6180</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.1660</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.9060</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.6570</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.8420</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>1.2990</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.9910</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.7910</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.6100</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.4410</td>
</tr>
<tr>
<td>50.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.5570</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.1770</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.8450</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.6230</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.4760</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2375.87</td>
<td>0.3780</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.2520</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.9370</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.7500</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.4980</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.3860</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.2860</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2310</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.1933</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2870</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2380</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1719</td>
</tr>
</tbody>
</table>

Figure B.2: Apparent Resistivity Data for CLSVE02
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>20.4000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>3.0400</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>5.0600</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.3450</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>6.7200</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.0300</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.6810</td>
</tr>
<tr>
<td>16.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.0670</td>
</tr>
<tr>
<td>32.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.7250</td>
</tr>
<tr>
<td>64.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.5700</td>
</tr>
<tr>
<td>128.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.3100</td>
</tr>
<tr>
<td>256.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.4910</td>
</tr>
<tr>
<td>512.00</td>
<td>2.00</td>
<td>4.00</td>
<td>175.57</td>
<td>0.9840</td>
</tr>
<tr>
<td>1024.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.6010</td>
</tr>
<tr>
<td>2048.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>2.6500</td>
</tr>
<tr>
<td>4096.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.5330</td>
</tr>
<tr>
<td>8192.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.6910</td>
</tr>
<tr>
<td>16384.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.8870</td>
</tr>
<tr>
<td>32768.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.6250</td>
</tr>
<tr>
<td>65536.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.7710</td>
</tr>
<tr>
<td>131072.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>1.2430</td>
</tr>
<tr>
<td>262144.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.9800</td>
</tr>
<tr>
<td>524288.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.7980</td>
</tr>
<tr>
<td>1048576.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.36</td>
<td>0.6110</td>
</tr>
<tr>
<td>2097152.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.3920</td>
</tr>
<tr>
<td>4194304.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.6350</td>
</tr>
<tr>
<td>8388608.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.2350</td>
</tr>
<tr>
<td>16777216.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.9510</td>
</tr>
<tr>
<td>33554432.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.6450</td>
</tr>
<tr>
<td>67108864.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.4040</td>
</tr>
<tr>
<td>134217728.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.3200</td>
</tr>
<tr>
<td>268435456.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.0610</td>
</tr>
<tr>
<td>536870912.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.7800</td>
</tr>
<tr>
<td>1073741824.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.6120</td>
</tr>
<tr>
<td>2147483648.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.5180</td>
</tr>
<tr>
<td>4294967296.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.4020</td>
</tr>
<tr>
<td>8589934592.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.3140</td>
</tr>
<tr>
<td>17179869184.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2550</td>
</tr>
<tr>
<td>34359738368.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.2100</td>
</tr>
<tr>
<td>68719476736.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.3090</td>
</tr>
<tr>
<td>137438953472.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2510</td>
</tr>
<tr>
<td>274877906944.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1675</td>
</tr>
</tbody>
</table>

Figure B.3: Apparent Resistivity Data for CLSVES03
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>Z(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>22.7000 142.63 CLSVES04</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>9.2600 174.55 CLARA B06</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.5600 176.15 900 M STICK</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.5900 176.58 EM34 LINE</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>7.5500 177.89</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.0800 169.35</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.6100 159.33</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.9340 145.25</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.5860 131.63</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.2500 155.15</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.8430 138.96</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.1720 128.87</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.6680 115.95</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.3560 110.72</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>1.8440 115.80</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>0.9220 108.62</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.6040 113.95</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.4590 126.17</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.90</td>
<td>0.3190 157.84</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>0.9730 122.27</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.6540 154.10</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.5090 191.89</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.4100 225.41</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.3180 275.98</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.2320 360.78</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.8580 215.64</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.6510 267.15</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.4710 355.13</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.3780 452.00</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.3080 534.60</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.2400 569.73</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.7780 428.49</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.6110 501.47</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.4870 555.09</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.4050 610.73</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.3110 743.77</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.2540 881.75</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.2110 1001.77</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.1770 1101.00</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.2590 976.41</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.2170 1073.72</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.1563 1215.30</td>
</tr>
</tbody>
</table>

Figure B.4: Apparent Resistivity Data for CLSVES04
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>41.0000 257.61 CLSVES05</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.05</td>
<td>19.0100 358.33 TOP ESKER</td>
</tr>
<tr>
<td>1.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.06</td>
<td>10.3800 513.60 FOURTH POINT</td>
</tr>
<tr>
<td>2.50</td>
<td>1.00</td>
<td>2.00</td>
<td>112.31</td>
<td>6.5900 740.13 EN34 MOST TO</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.51</td>
<td>21.5000 506.58 CLARA TOWN</td>
</tr>
<tr>
<td>5.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>18.6400 1024.79</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>12.3300 1220.18 1/3 UP TO HILL</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>6.5000 979.71 (40 METER)</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>4.8000 1078.19</td>
</tr>
<tr>
<td>14.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>20.7000 975.46 36 DEG.</td>
</tr>
<tr>
<td>16.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>14.4800 1091.77</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>11.0000 1209.51</td>
</tr>
<tr>
<td>25.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>7.5600 1312.21</td>
</tr>
<tr>
<td>30.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>4.2900 1334.27</td>
</tr>
<tr>
<td>35.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>19.2100 1207.00</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>10.8000 1272.35</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>6.3900 1204.49</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>4.3400 1193.02</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>2.2900 1133.09</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>9.5700 1202.60</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>4.9100 1156.89</td>
</tr>
<tr>
<td>70.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>3.0800 1161.13</td>
</tr>
<tr>
<td>80.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>1.8520 1018.19</td>
</tr>
<tr>
<td>90.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>1.2740 1105.66</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.6802 1247.18</td>
</tr>
<tr>
<td>110.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>3.9000 980.18</td>
</tr>
<tr>
<td>120.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>2.6000 1066.96</td>
</tr>
<tr>
<td>130.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>1.5760 1188.28</td>
</tr>
<tr>
<td>140.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>1.0100 1207.73</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.7610 1320.89</td>
</tr>
<tr>
<td>160.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.6090 1445.68</td>
</tr>
<tr>
<td>170.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.9530 1075.64</td>
</tr>
<tr>
<td>180.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>1.4350 1177.76</td>
</tr>
<tr>
<td>190.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>1.1420 1301.66</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.9510 1434.07</td>
</tr>
</tbody>
</table>

Figure B.5: Apparent Resistivity Data for CLSVES05
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>15.4500</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>6.4700</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.0500</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.4300</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>5.8900</td>
</tr>
<tr>
<td>5.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.7800</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.5400</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.8800</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.5830</td>
</tr>
<tr>
<td>15.00</td>
<td>1.00</td>
<td>2.00</td>
<td>311.97</td>
<td>0.1500</td>
</tr>
<tr>
<td>18.00</td>
<td>1.00</td>
<td>2.00</td>
<td>471.12</td>
<td>0.2400</td>
</tr>
<tr>
<td>20.00</td>
<td>1.00</td>
<td>2.00</td>
<td>75.40</td>
<td>1.8210</td>
</tr>
<tr>
<td>25.00</td>
<td>1.00</td>
<td>2.00</td>
<td>109.96</td>
<td>1.1580</td>
</tr>
<tr>
<td>30.00</td>
<td>1.00</td>
<td>2.00</td>
<td>173.57</td>
<td>0.7320</td>
</tr>
<tr>
<td>40.00</td>
<td>1.00</td>
<td>2.00</td>
<td>241.02</td>
<td>0.4550</td>
</tr>
<tr>
<td>50.00</td>
<td>1.00</td>
<td>2.00</td>
<td>370.83</td>
<td>2.0900</td>
</tr>
<tr>
<td>60.00</td>
<td>1.00</td>
<td>2.00</td>
<td>529.81</td>
<td>1.2500</td>
</tr>
<tr>
<td>70.00</td>
<td>1.00</td>
<td>2.00</td>
<td>688.80</td>
<td>0.8970</td>
</tr>
<tr>
<td>80.00</td>
<td>1.00</td>
<td>2.00</td>
<td>798.25</td>
<td>0.8398</td>
</tr>
<tr>
<td>90.00</td>
<td>1.00</td>
<td>2.00</td>
<td>877.86</td>
<td>0.6940</td>
</tr>
<tr>
<td>100.00</td>
<td>2.00</td>
<td>4.00</td>
<td>1055.09</td>
<td>0.5160</td>
</tr>
<tr>
<td>110.00</td>
<td>2.00</td>
<td>4.00</td>
<td>1233.33</td>
<td>1.5750</td>
</tr>
<tr>
<td>120.00</td>
<td>2.00</td>
<td>4.00</td>
<td>1413.67</td>
<td>1.2210</td>
</tr>
<tr>
<td>130.00</td>
<td>2.00</td>
<td>4.00</td>
<td>1593.98</td>
<td>0.8510</td>
</tr>
<tr>
<td>140.00</td>
<td>2.00</td>
<td>4.00</td>
<td>1774.33</td>
<td>0.6260</td>
</tr>
<tr>
<td>150.00</td>
<td>2.00</td>
<td>4.00</td>
<td>1954.67</td>
<td>0.5060</td>
</tr>
<tr>
<td>160.00</td>
<td>2.00</td>
<td>4.00</td>
<td>2135.00</td>
<td>0.3960</td>
</tr>
<tr>
<td>170.00</td>
<td>2.00</td>
<td>4.00</td>
<td>2315.33</td>
<td>1.0400</td>
</tr>
<tr>
<td>180.00</td>
<td>2.00</td>
<td>4.00</td>
<td>2495.67</td>
<td>0.8100</td>
</tr>
<tr>
<td>190.00</td>
<td>2.00</td>
<td>4.00</td>
<td>2675.00</td>
<td>0.6600</td>
</tr>
</tbody>
</table>

Figure B.6: Apparent Resistivity Data for CLSVES06
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>26.7000 167.76 CLSVES07</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>10.0400 189.25</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.2700 161.80 10 M. FROM BUCHES</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.2640 141.96 FIRST 10 M.</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>6.4900 152.92 ON BOG</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.5900 142.39 BETWEEN BOG AND</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.76</td>
<td>1.2670 125.38 ESKER</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.7460 116.01</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.5020 112.76 86 DEGR</td>
</tr>
<tr>
<td>6.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>2.5500 120.17</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.4800 111.59 EM34 LINE MOST</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.0050 110.51 TO CLARA TOWN</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.6950 120.63</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.4400 136.85</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>1.9220 120.73</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>1.1290 133.01</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.7840 147.73</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.6110 167.96</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.30</td>
<td>0.4140 204.25</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>1.3070 164.24</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.8650 203.91</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.6280 236.75</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.5050 277.64</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.3890 337.60</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>1.0420 281.88</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.7950 326.24</td>
</tr>
</tbody>
</table>

Figure B.7: Apparent Resistivity Data for CLSVES07
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>22.9000</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>8.3800</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>2.9500</td>
</tr>
<tr>
<td>8.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.2190</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>7.0400</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.8500</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.4200</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>0.8280</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.5190</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>2.9400</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>1.6960</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.0770</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>0.5990</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.2950</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>1.7340</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>0.7960</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>0.5000</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>0.3790</td>
</tr>
<tr>
<td>40.00</td>
<td>3.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.2650</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>0.8250</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>0.5620</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.4440</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.3640</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.2950</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.2260</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>0.7680</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>0.6100</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>0.4640</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.3860</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.3270</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>0.8360</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>0.7060</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>0.5770</td>
</tr>
</tbody>
</table>

Figure B.8: Apparent Resistivity Data for CLSVES08
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>Z(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>20.8000 130.69 CLSVES09</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>7.5200 141.75</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.46</td>
<td>3.3000 163.28 TOP RIDGE</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.6980 190.71 226 TO 46 DEGR</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>5.3700 126.53</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>2.7300 150.09 85 M. FROM</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.6680 165.07 WHITE TUBE</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.2170 189.25</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.8850 198.79</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.5800 159.28</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.4000 180.96</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.7320 190.44</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.37</td>
<td>1.2540 217.66</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.8430 262.19</td>
</tr>
<tr>
<td>13.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>3.0600 192.27</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>2.0800 245.04</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.5430 290.85</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>1.2400 340.86</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.8500 420.38</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>2.5600 321.70</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>1.7510 412.57</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>1.2950 488.20</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>1.0340 568.47</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.7610 660.45</td>
</tr>
<tr>
<td>100.00</td>
<td>10.00</td>
<td>20.00</td>
<td>1555.09</td>
<td>0.5190 807.09</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>2.1600 542.87</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.9900 816.64</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>1.0840 817.32</td>
</tr>
<tr>
<td>125.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1195.77</td>
<td>0.7940 949.44</td>
</tr>
<tr>
<td>150.00</td>
<td>20.00</td>
<td>40.00</td>
<td>1735.73</td>
<td>0.6200 1076.15</td>
</tr>
<tr>
<td>175.00</td>
<td>20.00</td>
<td>40.00</td>
<td>2373.87</td>
<td>0.5180 1229.86</td>
</tr>
<tr>
<td>125.00</td>
<td>40.00</td>
<td>80.00</td>
<td>550.76</td>
<td>1.6830 722.73</td>
</tr>
<tr>
<td>150.00</td>
<td>40.00</td>
<td>80.00</td>
<td>820.74</td>
<td>1.3040 1070.25</td>
</tr>
<tr>
<td>175.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1139.81</td>
<td>1.0790 1229.85</td>
</tr>
<tr>
<td>200.00</td>
<td>40.00</td>
<td>80.00</td>
<td>1507.96</td>
<td>0.9120 1375.26</td>
</tr>
<tr>
<td>250.00</td>
<td>40.00</td>
<td>80.00</td>
<td>2391.54</td>
<td>0.6580 1573.63</td>
</tr>
<tr>
<td>300.00</td>
<td>40.00</td>
<td>80.00</td>
<td>3471.46</td>
<td>0.4800 1666.30</td>
</tr>
<tr>
<td>350.00</td>
<td>40.00</td>
<td>80.00</td>
<td>4747.73</td>
<td>0.3800 1804.14</td>
</tr>
<tr>
<td>400.00</td>
<td>40.00</td>
<td>80.00</td>
<td>6220.35</td>
<td>0.3080 1915.87</td>
</tr>
<tr>
<td>350.00</td>
<td>50.00</td>
<td>100.00</td>
<td>3769.91</td>
<td>0.5010 1888.73</td>
</tr>
<tr>
<td>400.00</td>
<td>50.00</td>
<td>100.00</td>
<td>4948.01</td>
<td>0.3830 1895.09</td>
</tr>
<tr>
<td>500.00</td>
<td>50.00</td>
<td>100.00</td>
<td>7775.44</td>
<td>0.2820 2192.67</td>
</tr>
</tbody>
</table>

Figure B.9: Apparent Resistivity Data for CLSVES09
<table>
<thead>
<tr>
<th>AB/2</th>
<th>MN/2</th>
<th>2(MN/2)</th>
<th>K</th>
<th>MEASURING PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>6.28</td>
<td>18.2500</td>
</tr>
<tr>
<td>2.50</td>
<td>0.50</td>
<td>1.00</td>
<td>18.85</td>
<td>7.0100</td>
</tr>
<tr>
<td>4.00</td>
<td>0.50</td>
<td>1.00</td>
<td>49.48</td>
<td>3.0700</td>
</tr>
<tr>
<td>6.00</td>
<td>0.50</td>
<td>1.00</td>
<td>112.31</td>
<td>1.5550</td>
</tr>
<tr>
<td>4.00</td>
<td>1.00</td>
<td>2.00</td>
<td>23.56</td>
<td>6.3800</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>2.00</td>
<td>54.98</td>
<td>3.0000</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>2.00</td>
<td>98.96</td>
<td>1.7930</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
<td>2.00</td>
<td>155.51</td>
<td>1.2370</td>
</tr>
<tr>
<td>12.00</td>
<td>1.00</td>
<td>2.00</td>
<td>224.62</td>
<td>0.9680</td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>4.00</td>
<td>47.12</td>
<td>3.6800</td>
</tr>
<tr>
<td>10.00</td>
<td>2.00</td>
<td>4.00</td>
<td>75.40</td>
<td>2.5400</td>
</tr>
<tr>
<td>12.00</td>
<td>2.00</td>
<td>4.00</td>
<td>109.96</td>
<td>1.8620</td>
</tr>
<tr>
<td>15.00</td>
<td>2.00</td>
<td>4.00</td>
<td>173.57</td>
<td>1.3250</td>
</tr>
<tr>
<td>20.00</td>
<td>2.00</td>
<td>4.00</td>
<td>311.02</td>
<td>0.8790</td>
</tr>
<tr>
<td>15.00</td>
<td>5.00</td>
<td>10.00</td>
<td>62.83</td>
<td>3.5300</td>
</tr>
<tr>
<td>20.00</td>
<td>5.00</td>
<td>10.00</td>
<td>117.81</td>
<td>2.2800</td>
</tr>
<tr>
<td>25.00</td>
<td>5.00</td>
<td>10.00</td>
<td>188.50</td>
<td>1.6900</td>
</tr>
<tr>
<td>30.00</td>
<td>5.00</td>
<td>10.00</td>
<td>274.89</td>
<td>1.5300</td>
</tr>
<tr>
<td>40.00</td>
<td>5.00</td>
<td>10.00</td>
<td>494.80</td>
<td>0.9200</td>
</tr>
<tr>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
<td>125.66</td>
<td>2.7400</td>
</tr>
<tr>
<td>40.00</td>
<td>10.00</td>
<td>20.00</td>
<td>235.62</td>
<td>1.8550</td>
</tr>
<tr>
<td>50.00</td>
<td>10.00</td>
<td>20.00</td>
<td>376.99</td>
<td>0.5260</td>
</tr>
<tr>
<td>60.00</td>
<td>10.00</td>
<td>20.00</td>
<td>549.78</td>
<td>0.3360</td>
</tr>
<tr>
<td>75.00</td>
<td>10.00</td>
<td>20.00</td>
<td>867.86</td>
<td>0.8200</td>
</tr>
<tr>
<td>60.00</td>
<td>20.00</td>
<td>40.00</td>
<td>251.33</td>
<td>2.3000</td>
</tr>
<tr>
<td>75.00</td>
<td>20.00</td>
<td>40.00</td>
<td>410.37</td>
<td>1.6440</td>
</tr>
<tr>
<td>100.00</td>
<td>20.00</td>
<td>40.00</td>
<td>753.98</td>
<td>1.0880</td>
</tr>
</tbody>
</table>

Figure B.10: Apparent Resistivity Data for CLSVES10

41.
Appendix C

Raheenmore Interpreted Resistivity Sounding Curves
Date of the measurement: 14/03/1990.
Location: RAHEENMORE.
Map nr.: RHSVES01
Measuring station nr.: CENTRE AT 243 910 E, 232 400 N.
Curve Fitting RMS Error: 13.5 %

Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.3</td>
<td>120.6</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>45.3</td>
</tr>
<tr>
<td>3</td>
<td>30.0</td>
<td>80.9</td>
</tr>
<tr>
<td>4</td>
<td>INF.</td>
<td>19494.3</td>
</tr>
</tbody>
</table>

Figure C.1: Interpreted Resistivity Sounding Curve for RHSVES01
Date of the measurement: 15/03/90
Location: RAHEENMORE
Map nr.: 02
Measuring station nr.: RHSVES02
Curve Fitting RMS Error: 3.8%

Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.6</td>
<td>171.5</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>51.6</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>158.7</td>
</tr>
</tbody>
</table>

Figure C.2: Interpreted Resistivity Sounding Curve for RHSVES02
Date of the measurement: 15/03/90
Location: RAHEENMORE
Map nr.: 03
Measuring station nr.: RHSVES03
Curve Fitting RMS Error: 25.0%

Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.5</td>
<td>169.1</td>
</tr>
<tr>
<td>2</td>
<td>4.1</td>
<td>51.2</td>
</tr>
<tr>
<td>3</td>
<td>23.6</td>
<td>61.4</td>
</tr>
<tr>
<td>4</td>
<td>INF.</td>
<td>5541.6</td>
</tr>
</tbody>
</table>

Figure C.3: Interpreted Resistivity Sounding Curve for RHSVES03
Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.4</td>
<td>172.5</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>54.3</td>
</tr>
<tr>
<td>3</td>
<td>34.8</td>
<td>81.5</td>
</tr>
<tr>
<td>4</td>
<td>INF.</td>
<td>10000.0</td>
</tr>
</tbody>
</table>

Figure C.4: Interpreted Resistivity Sounding Curve for RHSVES04
Figure C.5: Interpreted Resistivity Sounding Curve for RHSVES05
Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8</td>
<td>56.5</td>
</tr>
<tr>
<td>2</td>
<td>INF.</td>
<td>1946.4</td>
</tr>
</tbody>
</table>

Figure C.6: Interpreted Resistivity Sounding Curve for RHSVES06
Date of the measurement : 20/03/90
Location : rahan
Map nr. : 07
Measuring station nr. : rhaves07
Curve Fitting RMS Error : 7.7 %

Model parameters :

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.6</td>
<td>134.3</td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
<td>66.3</td>
</tr>
<tr>
<td>3</td>
<td>60.3</td>
<td>181.4</td>
</tr>
<tr>
<td>4</td>
<td>INF.</td>
<td>9110.2</td>
</tr>
</tbody>
</table>

Figure C.7: Interpreted Resistivity Sounding Curve for RHSVES07
Date of the measurement: 20/02/90
Location: Hartle Fields
Map no.: 08
Measuring station no.: rhsves08
Curve Fitting RMS Error: 3.7%

Figure C.8: Interpreted Resistivity Sounding Curve for RHSVES08
Figure C.9: Interpreted Resistivity Sounding Curve for RHSVES09
Date of the measurement: 22/03/90
Location: raheen
Map nr.: 10
Measuring station nr.: rhsves10
Curve Fitting RMS Error: 5.7 %

Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.6</td>
<td>190.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>7957.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure C.10: Interpreted Resistivity Sounding Curve for RHSVES10
Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.3</td>
<td>207.0</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>50.8</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>2994.4</td>
</tr>
</tbody>
</table>

Figure C.11: Interpreted Resistivity Sounding Curve for RHSVES11
Date of the measurement : 23/03/90
Location : Rahoon
Map nr. : 12
Measuring station nr. : RHSVES12
Curve Fitting RMS Error : 8.3 %

Figure C.12: Interpreted Resistivity Sounding Curve for RHSVES12
Date of the measurement: 27/03/90
Location: raheen
Map nr.: 13
Measuring station nr.: rhsves13
Curve Fitting RMS Error: 8.6%

Figure C.13: Interpreted Resistivity Sounding Curve for RHSVES13
Figure C.14: Interpreted Resistivity Sounding Curve for RHSVES14
Appendix D

Clara Interpreted Resistivity Sounding Curves
Figure D.1: Interpreted Resistivity Sounding Curve for CLSVES01
Figure D.2: Interpreted Resistivity Sounding Curve for CLSVES02
Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.8</td>
<td>152.0</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>84.5</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>1337.4</td>
</tr>
</tbody>
</table>

Figure D.3: Interpreted Resistivity Sounding Curve for CLSVES03
Figure D.4: Interpreted Resistivity Sounding Curve for CLSVES04

Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.8</td>
<td>169.6</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
<td>22.1</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>2534.7</td>
</tr>
</tbody>
</table>
Date of the measurement: 29/03/1990
Location: CLARA 006
Map nr.: 05
Measuring station nr.: CLSVE05
Curve Fitting RMS Error: 6.1%

Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>69.5</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>2073.2</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>1133.8</td>
</tr>
</tbody>
</table>

Figure D.5: Interpreted Resistivity Sounding Curve for CLSVE05
Figure D.6: Interpreted Resistivity Sounding Curve for CLSVES06
Figure D.7: Interpreted Resistivity Sounding Curve for CLSVES07

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8</td>
<td>181.0</td>
</tr>
<tr>
<td>2</td>
<td>5.3</td>
<td>52.3</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>474.3</td>
</tr>
</tbody>
</table>
Figure D.8: Interpreted Resistivity Sounding Curve for CLSVES08
Data of the measurement:
Location: Clara bog
Map nr.: RIDGE 09
Measuring station nr.: CLSVES08
Curve Fitting RMS Error: 5.7 %

Model parameters:
Layer	Thickness	Resistivity
1 | 11.7 | 144.7 |
2 | INF. | 2594.5 |

Figure D.9: Interpreted Resistivity Sounding Curve for CLSVES08
Model parameters:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9</td>
<td>123.1</td>
</tr>
<tr>
<td>2</td>
<td>7.4</td>
<td>175.3</td>
</tr>
<tr>
<td>3</td>
<td>INF.</td>
<td>1075.6</td>
</tr>
</tbody>
</table>

Figure D.10: Interpreted Resistivity Sounding Curve for CLSVES10