National Parks & Wildlife Service

Flughany Bog SAC
(site code 000497)

Conservation objectives supporting document - raised bog habitats

Version 1

January 2016
Contents

1 INTRODUCTION ... 2
 1.1 RAISED BOGS .. 2
 1.1.1 Raised Bogs Microtopography .. 3
 1.1.2 Typical Flora of Irish Raised Bogs .. 5
 1.1.3 Typical Fauna of Irish Raised Bogs .. 6
 1.2 HABITATS DIRECTIVE RAISED BOG HABITATS IN IRELAND ... 9
 1.2.1 Restoration of Active Raised Bog in Ireland .. 10
 1.3 FLUGHANY BOG SAC .. 10
 1.3.1 Flora of Flughany Bog .. 11
 1.3.2 Fauna of Flughany Bog .. 12

2 CONSERVATION OBJECTIVES ... 13
 2.1 AREA ... 13
 2.2 RANGE .. 14
 2.3 STRUCTURE AND FUNCTIONS ... 14
 2.3.1 High bog area ... 15
 2.3.2 Hydrological regime: water levels ... 15
 2.3.3 Hydrological regime: flow patterns ... 16
 2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas) .. 17
 2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland 17
 2.3.6 Vegetation quality: microtopographical features ... 18
 2.3.7 Vegetation quality: bog moss (Sphagnum) species .. 18
 2.3.8 Typical ARB species: flora .. 19
 2.3.9 Typical ARB species: fauna ... 19
 2.3.10 Elements of local distinctiveness .. 20
 2.3.10.1 Site features ... 20
 2.3.10.2 Rare flora .. 20
 2.3.10.3 Rare fauna .. 20
 2.3.11 Negative physical indicators ... 20
 2.3.12 Vegetation composition: native negative indicator species 20
 2.3.13 Vegetation composition: non-native invasive species .. 21
 2.3.14 Air quality: nitrogen deposition .. 21
 2.3.15 Water quality .. 22

3 REFERENCES .. 23

Map 1: Extent of potential active raised bog on Flughany Bog.

Map 2: Distribution of raised bog ecotopes on Flughany Bog.

Map 3: Digital elevation model and drainage patterns at Flughany Bog.
1 Introduction

This document presents a summary of the background information that has informed the process of setting the Site-Specific Conservation Objective in relation to the priority Annex I habitat ‘active raised bog’ (habitat code 7110) (hereafter referred to as Active Raised Bog (ARB)), for which Flughany Bog Special Area of Conservation (SAC) has been designated.

Flughany Bog SAC is also designated for two other related Annex I habitats, namely; ‘degraded raised bogs still capable of natural regeneration’ (habitat code 7120) (hereafter referred to as Degraded Raised Bog (DRB)) and ‘depressions on peat substrates of the Rhynchosporion’ (habitat code 7150). Based on the close ecological relationship between these three habitats types, it is not necessary to set specific Conservation Objectives for all three habitats individually. It is considered that should favourable conservation condition for ARB be achieved on the site, then, as a consequence, favourable conservation condition for the other two habitats would also be achieved.

1.1 Raised Bogs

Raised bogs are accumulations of deep peat (typically 3-12m) that originated in shallow lake basins or topographic depressions. The name is derived from the elevated surface, or dome, that develops as raised bogs grow upwards through the accumulation of peat; the domed effect is often exaggerated when the margins of a bog are damaged by turf cutting or drainage, and are drying out. Raised bogs are most abundant in the lowlands of central and mid-west Ireland.

Irish raised bogs are classified into two sub-types (Schouten 1984): 1. Western or intermediate raised bogs, and 2. True midland or eastern raised bogs, based on phytosociological and morphological characteristics. In terms of overall morphology, the main difference between these two raised bog types is that while eastern raised bogs tended to stay more confined to the depressions in which they were formed, western raised bogs tended to grow out beyond their original basin, presumably a result of the higher rainfall levels (Cross 1990). In terms of vegetation differences the most obvious difference between the two bog types is the presence of a number of oceanic plant species on western raised bogs which are absent from the true midland raised bogs. The liverwort species Pleurozia purpurea1 and the moss species Campylomnas atrovirens grow on western raised bogs but not on eastern raised bogs; similarly, Carex panicea is generally more common on the high bog surfaces of western raised bogs (Schouten 1984). All of these plant species are widespread in the low-level Atlantic blanket bogs and their presence in western raised bogs is presumed to be due to the higher rainfall levels and greater rain-derived nutrient fluxes.

Exploitation has been extensive and none of the remaining Irish raised bogs are completely intact (Cross 1990). It is estimated that less than 10% of the original raised bog habitat in Ireland is in a near intact state (uncut), with less than 0.5% continuing to support ARB (DAHG 2014). Excavated face banks, whether active or inactive, are a common feature around the margins. Any areas where part of the bog has been removed are termed cutover bog, with the remaining area referred to as high bog or intact bog. In a natural state, raised bogs are circled by a wetland fringe, known as the lagg zone, which is usually characterised by fen communities. In Ireland, most lags have been lost through drainage and land reclamations (Fossitt 2000).

1 Note on species nomenclature: In the case of plant species, only scientific names are used throughout the main text while common English names are included in tables. In the case of faunal species, common English names are used throughout the text together with scientific names.
The surface of a relatively intact raised bog is typically wet, acid, deficient in plant nutrients, and supports specialised plant communities that are low in overall diversity and comprising species adapted to the biologically harsh conditions. The vegetation is open, treeless and bog mosses or *Sphagnum* species dominate the ground layer. Small-scale mosaics of plant communities are characteristic and reflect the complex microtopography of hummocks and hollows on the bog surface (see Section 1.1.1 below). Raised bogs are driest at the margins and wetness generally increases towards the centre of the peat mass where well-developed pool systems are most likely to occur.

Raised bogs may also contain soaks and flushes (wet ‘active’ or dry ‘inactive’) due to the increased supply of nutrients over time through concentrated surface flows, or where there are links with regional groundwater or the underlying mineral substratum. Slight mineral enrichment and/or constant through flow of water provide conditions suitable for a range of species that are not typically associated with other areas of raised bog.

When damaged by peat extraction or drainage, the water table in the peat drops and the bog surface becomes relatively dry; pools are rare or absent, cover of bog mosses is greatly reduced and *Calluna vulgaris* increases in abundance. The drop in water table causes the peat to compress under its own weight causing the bog surface to deform. Greater deformation occurs closest to areas where the water table has dropped. This increases the slope of the bog surface causing rain falling on the ground surface to flow off the bog more quickly. The effect is normally greatest around the margins and in a typical situation surface wetness increases towards the centre of the bog. Trees such as *Betula pubescens* and *Pinus sylvestris* frequently invade the drier cut margins, but may also occur in flushed areas.

In Ireland, the Annex I habitat ARB is currently considered to be in unfavourable bad conservation status principally as a result of marginal turf cutting, more recent semi-industrial peat extraction, and associated drainage effects caused by these activities (NPWS 2008; 2013). The lowering of regional groundwater levels is also known to have had an effect on some sites. Fires associated with turf cutting, dumping, or agricultural activities may also adversely affect the condition of the habitat.

1.1.1 Raised Bogs Microtopography

Raised bogs are typically treeless and are characterised by a distinctive vegetation dominated by bog mosses (*Sphagnum*), sedges, and dwarf shrubs, all of which are adapted to waterlogged, acidic and exposed conditions. Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical surface features of hummocks, hollows, lawns, and pools. The wettest bogs, which have extensive pool systems, have the greatest variety of plant and animal life and support a range of specialist species.

The following terms that describe microtopography are generally accepted in the study of mire ecology (Gore 1983). A schematic diagram showing the typical microtopographical divisions is presented in Figure 1.

Pools

Depressions in the bog surface where the water table remains above the surface level all year around or below surface level for only a very short period of time. They are characterised by the presence of aquatic plant species such as *Sphagnum cuspidatum*, *S. denticulatum*, and *Cladopodiella fluviatilis*. In more degraded scenarios or where high seasonal water fluctuation occurs, the pools contain open water and/or algae. Tear pools are found on bogs where internal tensions, due to mass movement of peat, has taken place
within the high bog and has caused the development of elongated pools. These are frequently found on western bogs and may be natural or anthropogenic in origin.

Hollows
These are shallow depressions (less than 5cm deep) on the bog surface where surface water collects, or where the water table reaches or lies just above ground level, depending on seasonal conditions. They are often filled with *Sphagnum* species such as *S. papillosum* and *S. cuspidatum*. They take many forms but are often eye shaped. Marginal hollows tend to be elongated as they are focused points for surface water run-off. They are often dominated by *Narthecium ossifragum*.

Lawns
These are shallow hollows or flat areas where one species dominates to form a lawn. This is frequently a *Sphagnum* species, such as *Sphagnum magellanicum*, or *S. papillosum* which can completely fill in a hollow to form a small lawn.

Flats
These are more or less flat areas which are intermediate between hollow and hummock communities. They tend to be drier than the above situations.

Hummocks
These are mounds on the bog surface which can range from a few centimetres to more than one metre in height. They are usually composed mainly of *Sphagnum* species, such as *Sphagnum magellanicum*, *S. capillifolium*, *S. austini* and *S. fuscum* but other bryophyte species such as *Hypnum jutlandicum* and *Leucobryum glaucum* are also important, especially as the hummock grows taller and becomes drier. *Calluna vulgaris* is another important element, as it flourishes where the water table is not at surface level (Kelly & Schouten 2002).

![Main microtopographical divisions of the high bog surface.](image)

Figure 1 Raised bog microtopographical divisions on the high bog surface (reproduced from Kelly & Schouten 2002).
1.1.2 Typical Flora of Irish Raised Bogs

Raised bogs are characterised by a distinctive vegetation dominated by a variety of mosses (e.g. *Sphagnum* spp., *Hypnum* spp., *Racomitrium* spp.), sedges and grass-like species (e.g. *Eriophorum* spp., *Rhynchospora* spp., *Narthecium ossifragum*, *Molinia caerulea* and *Carex* spp.), and dwarf shrubs (e.g. *Calluna vulgaris*, *Erica tetralix*, *Vaccinium* spp. and *Empetrum nigrum*). In addition to these groups, a number of other species characterise raised bogs including carnivorous plants (e.g. *Drosera* spp., *Utricularia* spp.), lichens of both the bog surface and epiphytes on the stems of dwarf shrubs and the occasional trees on bogs (e.g. *Cladonia* spp., *Usnea* spp.). Herbaceous plants are not a significant element on raised bogs and include a few commonly occurring species such as *Menyanthes trifoliata*, *Pedicularis sylvatica*, and *Potentilla erecta* (Cross 1990).

Drier areas and hummocks usually support *Calluna vulgaris*, *Eriophorum vaginatum*, *Trichophorum germanicum*, *Erica tetralix*, lichens (*Cladonia* spp.), bog mosses (*Sphagnum capillifolium*, *S. austinii*, *S. fuscum*, *S. papillosum*) and other mosses (*Dicranum scoparium*, *Leucobryum glaucum*). Wet hollow areas and pools are characterised by *Eriophorum angustifolium*, *Rhynchospora alba*, *Narthecium ossifragum*, *Drosera* spp., *Menyanthes trifoliata*, bladderworts (*Utricularia* spp.) and bog mosses (*Sphagnum cuspidatum*, *S. denticulatum* and *S. magellanicum*).

A list of flora species that are regarded as being typical of ARB habitat in Ireland is presented in Table 1. A number of these typical species would have a restricted distribution and do not occur throughout the range of the habitat in Ireland (see above), therefore only a subset of these species would be expected to be present on any individual bog.
Table 1 Flora species typically associated with active raised bog in Ireland (after NPWS 2013). Species list is based on vegetation communities defined by Kelly (1993) and Kelly & Schouten (2002).

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bog rosemary</td>
<td>Andromeda polifolia</td>
</tr>
<tr>
<td>Bog bead moss</td>
<td>Aulacomnium palustre</td>
</tr>
<tr>
<td>Bristly Swan-neck moss*</td>
<td>Campylus atrorvirens*</td>
</tr>
<tr>
<td>Lichen</td>
<td>Cladonia ciliata</td>
</tr>
<tr>
<td>Lichen</td>
<td>Cladonia portentosa</td>
</tr>
<tr>
<td>Long leaved sundew</td>
<td>Drosera anglica</td>
</tr>
<tr>
<td>Intermediate leaved sundew*</td>
<td>Drosera intermedia*</td>
</tr>
<tr>
<td>Round leaved sundew</td>
<td>Drosera rotundifolia</td>
</tr>
<tr>
<td>Common cotton grass</td>
<td>Eriophorum angustifolium</td>
</tr>
<tr>
<td>Hare’s tail cotton grass</td>
<td>Eriophorum vaginatum</td>
</tr>
<tr>
<td>Large white moss</td>
<td>Leucobryum glaucum</td>
</tr>
<tr>
<td>Bogbean</td>
<td>Menyanthes trifoliata</td>
</tr>
<tr>
<td>Bog asphodel</td>
<td>Narthecium ossifragum</td>
</tr>
<tr>
<td>Purple spoonwort*</td>
<td>Pleurozia purpurea*</td>
</tr>
<tr>
<td>Woolly fringe moss*</td>
<td>Racomitrium lanuginosum*</td>
</tr>
<tr>
<td>White beak-sedge</td>
<td>Rhynchospora alba</td>
</tr>
<tr>
<td>Austin’s bog moss</td>
<td>Sphagnum austini</td>
</tr>
<tr>
<td>Red bog moss</td>
<td>Sphagnum capillifolium</td>
</tr>
<tr>
<td>Feathery bog moss</td>
<td>Sphagnum cuspidatum</td>
</tr>
<tr>
<td>Cow-horn bog moss*</td>
<td>Sphagnum denticulatum*</td>
</tr>
<tr>
<td>Rusty bog moss</td>
<td>Sphagnum fuscum</td>
</tr>
<tr>
<td>Magellanic bog moss</td>
<td>Sphagnum magellanicum</td>
</tr>
<tr>
<td>Papillose bog moss</td>
<td>Sphagnum papillosum</td>
</tr>
<tr>
<td>Golden bog moss*</td>
<td>Sphagnum pulchrum*</td>
</tr>
<tr>
<td>Lustrous bog moss</td>
<td>Sphagnum subnitens</td>
</tr>
<tr>
<td>Bladderwort</td>
<td>Utricularia minor</td>
</tr>
<tr>
<td>Cranberry</td>
<td>Vaccinium oxyccocos</td>
</tr>
</tbody>
</table>

Notes: * Species more typical of western raised bog sites.

1.1.3 Typical Fauna of Irish Raised Bogs

Raised bogs are extremely nutrient poor ecosystems. Acidic, waterlogged and exposed conditions make them an unattractive habitat for animal life. As a consequence they are relatively poor both in terms of species diversity and population densities. Many species are opportunists, vagrant or temporary rather than specialists, but nonetheless may have an important impact on the ecosystem through nutrient imports and exports or other interactions (Cross 1990). A list of fauna species that would be typically associated with raised bog habitat in Ireland is presented in Table 2. The species listed are not confined to ARB and most, if not all, will use other areas of the bog and surrounding habitats.

Raised bog is unsuitable habitat for many vertebrates due to the lack of available foraging and suitable breeding places. The Irish hare is the only mammal commonly occurring. The common frog is the most common vertebrate predator.

Although 18 species of birds have been reported breeding on raised bogs (Wilson 1990) many of these species utilise the bog as a nesting habitat only. They are dependent on other neighbouring habitats such as open water bodies, callows and wet grassland particularly for
feeding. Just a few species of bird, including meadow pipit (Anthus pratensis), skylark (Alauda arvensis) and curlew (Numenius arquata) complete their full breeding cycle on the bog and the first two species are the commonest species occurring (Bracken et al. 2008). Red grouse (Lagopus lagopus) must also be included as a typical bog species, occurring year round as a resident. Red grouse and curlew have declined significantly on across raised bogs in recent times. BirdWatch Ireland have published an Action Plan for Raised Bog Birds in Ireland which lists 13 species of conservation concern that are associated with Raised Bogs (O’Connell 2011). A recent review of birds of conservation concern in Ireland has since added meadow pipit (Anthus pratensis) to the red (most endangered) list of Birds of Conservation Concern in Ireland (BoCCI) (Colhoun & Cummins 2013).

Our knowledge of the invertebrate assemblages associated with Irish raised bogs remains incomplete (particularly micro-invertebrate species) with few studies undertaken (Reynolds 1984a; Reynolds 1984b; Reynolds 1985; De Leeuw 1986; O Connor et al. 2001; Crushell et al. 2008; Hannigan & Kelly-Quinn 2011; Wisdom & Bolger 2011, Nolan 2013). Van Duinen (2013) highlights the importance of structural diversity at various spatial scales (e.g. micro-scale of hummock hollow topography to macro-scale which would include the landscape setting of the bog, see Schouten (2002)) as a prerequisite for hosting the full species diversity of raised bog landscapes.

A recent study of Lepidoptera associated with raised bogs identified two species that appear to be characteristic of higher quality raised bog habitat, namely bordered grey (Selidosema brunnearia (Villers, 1789)) and light knot grass (Acronicta menyanthidis (Esper, 1789)) (Flynn 2014).

Recent research on spiders has revealed that a number of species are known to occur in Ireland only on raised bog habitats, all of which are considered local/uncommon or rare across Europe (Myles Nolan pers. comm.). Five of these species that can be considered useful indicators of ARB include: Glyphesis cottonae (La Touche 1945), Walckenaeria alticeps (Denis 1952), Satilatlas britteni (Jackson 1913), Pirata piscatorius (Clerck 1757), and Minicia marginella (Wider 1834) (Myles Nolan pers. comm.).

The information currently available on other invertebrate groups of peatland systems in Ireland is not sufficient to allow a determination of many species that are typically associated with or may be characteristic of higher quality ARB. A selection of invertebrate species and species groups that are known to be typically associated with raised bogs are presented in Table 2.
Table 2 Fauna species typically associated with raised bog ecosystems in Ireland (after O’Connell 1987; Cross 1990; Renou-Wilson et al. 2011; Bracken & Smiddy 2012).

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammal species</td>
<td></td>
</tr>
<tr>
<td>Irish hare</td>
<td>Lepus timidus hibernicus</td>
</tr>
<tr>
<td>Otter</td>
<td>Lutra lutra</td>
</tr>
<tr>
<td>Pygmy shrew</td>
<td>Sorex minutes</td>
</tr>
<tr>
<td>Fox</td>
<td>Vulpes vulpes</td>
</tr>
<tr>
<td>Bird species</td>
<td></td>
</tr>
<tr>
<td>Skylark</td>
<td>Alauda arvensis</td>
</tr>
<tr>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
</tr>
<tr>
<td>Greenland white-fronted goose</td>
<td>Anser albifrons flavirostris</td>
</tr>
<tr>
<td>Meadow pipit</td>
<td>Anthus pratensis</td>
</tr>
<tr>
<td>Hen harrier</td>
<td>Circus cyaneus</td>
</tr>
<tr>
<td>Cuckoo</td>
<td>Cuculus canorus</td>
</tr>
<tr>
<td>Merlin</td>
<td>Falco columbarius</td>
</tr>
<tr>
<td>Kestrel</td>
<td>Falco tinnunculus</td>
</tr>
<tr>
<td>Snipe</td>
<td>Gallinago gallinago</td>
</tr>
<tr>
<td>Red grousse</td>
<td>Lagopus lagopus</td>
</tr>
<tr>
<td>Curlew</td>
<td>Numenius arquata</td>
</tr>
<tr>
<td>Golden plover</td>
<td>Pluvialis apricaria</td>
</tr>
<tr>
<td>Lapwing</td>
<td>Vanellus vanellus</td>
</tr>
<tr>
<td>Reptiles and amphibians</td>
<td></td>
</tr>
<tr>
<td>Common lizard</td>
<td>Lacerta vivipara</td>
</tr>
<tr>
<td>Common frog</td>
<td>Rana temporaria</td>
</tr>
<tr>
<td>Typical invertebrates</td>
<td></td>
</tr>
<tr>
<td>Black slug</td>
<td>Arion ater</td>
</tr>
<tr>
<td>Large heath butterfly</td>
<td>Coenonympha tullia</td>
</tr>
<tr>
<td>Marsh fritillary butterfly</td>
<td>Euphydryas aurinia</td>
</tr>
<tr>
<td>Bog-pool spider</td>
<td>Dolomedes fimbriatus</td>
</tr>
<tr>
<td>Water striders</td>
<td>Gerris and Velia species</td>
</tr>
<tr>
<td>Oak eggar moth</td>
<td>Lasiocampa quercus</td>
</tr>
<tr>
<td>Four-spotted chaser dragonfly</td>
<td>Libellula quadrimaculata</td>
</tr>
<tr>
<td>Fox moth</td>
<td>Macrothylacia rubi</td>
</tr>
<tr>
<td>Ant</td>
<td>Myrmica ruginodis</td>
</tr>
<tr>
<td>Emperor moth</td>
<td>Saturnia pavonia</td>
</tr>
<tr>
<td>Great green bog grasshopper</td>
<td>Stethophyma grossa</td>
</tr>
<tr>
<td>Other species groups that are well represented on raised bogs include:</td>
<td>Araneae (spiders and mites)</td>
</tr>
<tr>
<td></td>
<td>Ceratopogonidae (biting-midges)</td>
</tr>
<tr>
<td></td>
<td>Chironomids (non-biting midges)</td>
</tr>
<tr>
<td></td>
<td>Coleoptera (beetles)</td>
</tr>
<tr>
<td></td>
<td>Collembola (springtails)</td>
</tr>
<tr>
<td></td>
<td>Diptera (true flies)</td>
</tr>
<tr>
<td></td>
<td>Dytiscidae (water beetles)</td>
</tr>
<tr>
<td></td>
<td>Hemiptera (true bugs)</td>
</tr>
<tr>
<td></td>
<td>Hymenoptera (bees, wasps, ants and sawflies)</td>
</tr>
<tr>
<td></td>
<td>Lepidoptera (butterflies and moths)</td>
</tr>
<tr>
<td></td>
<td>Odonta (dragonflies and damselflies)</td>
</tr>
<tr>
<td></td>
<td>Orthoptera (grasshoppers)</td>
</tr>
<tr>
<td></td>
<td>Syrphidae (hoverflies)</td>
</tr>
<tr>
<td></td>
<td>Tipulidae (craneflies)</td>
</tr>
<tr>
<td></td>
<td>Tabanidae (horseflies)</td>
</tr>
</tbody>
</table>
1.2 Habitats Directive Raised Bog Habitats in Ireland

Four habitat types listed on Annex I of the EU Habitats Directive are typically associated with raised bogs in Ireland, two of which are priority habitats (*):

- 7110 Active raised bogs (ARB)*
- 7120 Degraded raised bogs still capable of natural regeneration (DRB)
- 7150 Depressions on peat substrates of the Rhynchosporion
- 91D0 Bog woodland*

The interpretation manual of EU habitats gives the following description for ‘active raised bogs’: “Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-Sphagnetalia magellaniic, Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris p., Caricetalia fuscæ p.). The term “active” must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included.” (CEC 2007).

DRB should be, according to the interpretation manual capable of regeneration to ‘Active Raised Bog’ in 30 years if appropriate measures are put in place (i.e. no major impacting activities are present and any necessary restoration works are implemented).

In Ireland, the identification of ARB is made at ecotope level based on the vegetation classification developed by Kelly (1993) and Kelly & Schouten (2002).

Raised bog vegetation communities are grouped into a series of community complexes and these complexes are then amalgamated into a series of ecotopes characterised by different physical characteristics using the approach outlined by Kelly & Schouten (2002).

The main ecotopes that community complexes are grouped into include:

- Central ecotope
- Sub-central ecotope
- Active flushes and soaks
- Sub-marginal ecotope
- Marginal ecotope
- Inactive flushes
- Face-bank ecotope

Actively accumulating peat conditions occur within the sub-central and central ecotopes, which are the wettest on the bog and an indication of good quality ARB. Active flushes and soaks are also dominated by Sphagnum mosses and typically have wet conditions. These features are associated with ARB and contribute to the overall diversity of the habitat.

The adjacent surrounding marginal, sub-marginal, and face-bank bog areas typically have a supporting function for the central and sub-central communities but are not peat accumulating. These drier ecotopes may or may not correspond to the Annex I habitat DRB, as it depends on whether they are capable of regeneration to ARB. Other drier ecotopes recorded on the high bog that do not correspond to ARB include ‘inactive flushes’ which typically have a low Sphagnum cover.
The Annex I habitat Rhynchosporion depressions (7150) typically occurs along pool edges and on flats underlain by deep, wet and quaking peat. Typical plant species include *Rhynchospora alba*, *Drosera anglica*, *Narthecium ossifragum*, *Sphagnum cuspidatum*, *S. denticulatum*, *S. magellanicum*, *S. papillosum*, *Menyanthes trifoliata*, and *Eriophorum angustifolium*.

The priority Annex I habitat bog woodland is also actively peat-forming and overlaps with the ARB habitat. Such woodlands are usually dominated by *Betula pubescens* with a characteristic ground cover dominated by *Sphagnum* moss species, which often form deep carpets, and other mosses including species of *Polytrichum*. Woodland areas are occasionally found on raised bogs that have an absence of the characteristic moss layer and are not regarded as peat forming. Such areas do not correspond to the Annex I habitat.

1.2.1 Restoration of Active Raised Bog in Ireland

As already mentioned in the Section 1.1, ARB is currently considered to be in unfavourable bad conservation status in Ireland. In addition, according to its definition, DRB should be capable of regeneration to ARB in a 30-year timescale. Thus, it follows that restoration measures are required in order to halt further losses and increase the area of ARB as well as to improve the condition of existing areas of the Annex I habitat.

Most of the restoration works undertaken so far in Ireland have concentrated on the high bog (e.g. Clara Bog, Mongan Bog, Sharavogue Bog and Raheenmore Bog) to prevent further losses as well as to restore areas to ARB. Nevertheless, some restoration works have also been undertaken on cutover areas such as at Ballykenny and Fisherstown Bogs and Killyconny Bog. Such work aims to do one or more of the following (depending on the bog in question): restore ARB on the high bog; reduce further ARB and DRB loss on the high bog; restore peat forming habitats (such as ARB, bog woodland, poor fen) on the cutover.

Works undertaken by the NPWS have indicated that there are significant differences, both ecological and economic, when comparing the effectiveness of works carried out on the cutover with those carried out on the high bog. Positive and significant results (i.e. expansion or development of ARB) can be achieved over a relatively short timeframe (10 years) on favourable areas of the high bog by blocking high bog drains. In contrast, a longer time period (30 years+) is required to achieve active peat formation on cutover areas, and even then the results are generally confined to smaller areas; i.e. flat areas (<0.3% surface slope) or enclosed depressions that have sufficient water flow (minimum catchment 0.5ha) to maintain wet conditions throughout the year. A longer time period (minimum 50-100 years) is likely to be required for high quality ARB habitat (vegetation structure and species diversity) to develop on such cutover areas. In addition, costs of restoration measures on cutover areas are typically significantly higher than those on high bog areas.

1.3 Flughany Bog SAC

The SAC includes the raised bog, known as Flughany Bog and surrounding areas which include cutover bog, scrub, wet grassland, and improved grassland.

The SAC has been selected for the following three Annex I habitats:

- [7110] Active raised bogs*
- [7120] Degraded raised bogs still capable of natural regeneration
- [7150] Depressions on peat substrates of the *Rhynchosporion*

Flughany Bog is an example of a western raised bog, located 10km south-east of Tobercurry. It is one of a series of small to medium-sized raised bogs which occur along the border between counties Mayo and Sligo. Flughany comprises two lobes which are separated by a
ridge of mineral material. The bog displays some features of blanket bog morphology, such as the absence of a distinct dome.

Most of the wet, high quality ARB at this site occurs in the south-eastern portion of the high bog. Here there is a well-developed pool and hummock system. The numerous interconnecting pool systems and wet flats support Rhynchosporion vegetation.

At Flughany, the structure of the bog is partially damaged mainly due to peat-cutting, which has lowered the water levels. This has resulted in a species-poor flora, which has a low Sphagnum cover, over a substantial part of the surface.

Flughany Bog, whilst relatively small, is a good example of a moderately intact raised bog. The site is also of note as it occurs close to the north-western limit of raised bog formation in Ireland.

1.3.1 Flora of Flughany Bog

At Flughany Bog, the vegetation of ARB is typically dominated by Sphagnum cuspidatum, with Rhynchospora alba, Drosera anglica, Menyanthes trifoliata, Eriophorum angustifolium, and bladderworts (Utricularia spp.). Wet lawns dominated by Rhynchospora alba also occur on flat ground between some of the pool complexes. Low hummocks of bog mosses, including scarce species such as Sphagnum austinii and S. fuscum, are a feature of the bog surface.

Central ecotope is found at three locations. The single community complex within this ecotope is characterised by deep, interconnecting pools with frequent open water. The microtopography also includes low hummocks, high hummocks, lawns and hollows. *Sphagnum cuspidatum* is the dominant pool Sphagnum species, with S. denticulatum also recorded, but uncommon. Total *Sphagnum* cover is approximately 40%. *Eriophorum angustifolium* is present in pools, while *S. papillosum* is common at pool edges together with the less commonly occurring Campylopus atrovirens. Interpool hummocks are dominated by *S. capillifolium*. Other common species in interpool areas are Narthecium ossifragum, Eriophorum vaginatum and Carex panicea. High hummocks, with tall Calluna vulgaris, Hypnum jutlandicum, Pleurozium schreberi and Racomitrium lanuginosum, are present, but rare, in the complex (Fernandez et al. 2014a, b).

Sub-central ecotope are found at six locations, characterised by three community complexes. In the first, the total Sphagnum cover is in the range of 51-75%, much of which is accounted for by the frequency of *S. capillifolium* hummocks. *S. papillosum* is also frequent on low hummocks and in hollows, while *S. tenellium* and *S. cuspidatum* are also present but uncommon. Common species included Calluna vulgaris, Eriophorum angustifolium, E. vaginatum and Narthecium ossifragum. Fire damage was evident in the complex in the form of charred, dead tall Calluna vulgaris stems and damaged Sphagnum hummocks (Fernandez et al. 2014a, b).

The second community complex is characterised by the presence of interconnecting pools with *Sphagnum* cover – mostly *S. cuspidatum* and *S. papillosum* - varying from approximately 40-80%. Campylopus atrovirens is occasional at pool edges, while *S. papillosum* is common on low hummocks around the edges of pools. The interpool flats are dominated by Narthecium ossifragum, with significant cover of Carex panicea. *S. capillifolium* is also common in low hummocks in the interpool areas. There are indications of flushing in the complex, where it occurs in the sub-central area. Large hummocks of Calluna vulgaris are present, though mostly somewhat fire-damaged, while Aulacomnium palustre, Dicranum scoparium and Pedicularis sylvatica are also recorded.
The third community complex has approximately 40% cover of tear pools, with variable Sphagnum cover. *S. cuspidatum* is the dominant pool Sphagnum. The quality of interpool habitat varies somewhat, with some parts having high Sphagnum cover, while others have lower Sphagnum cover and higher cover of Narthecium ossifragum. Total Sphagnum cover is in the range 34-50%. Sphagnum species include *S. capillifolium*, *S. papillosum* *S. tenellum* and *S. fuscum*. Other common species include *Calluna vulgaris*, *Eriophorum vaginatum*, and *E. angustifolium*. There is a flushed element to the sub-central ectotope vegetation in the north-east of the site where this complex occurs, with some sparse *Molinia caerulea* and occasional *Aulacomnium palustre* and *Dicranum scoparium*. Fire damage, in the form of charred, dead tall *Calluna vulgaris* stems and dead Sphagnum on low hummocks, is seen throughout the complex. *Rhynchospora fusca* is recorded in the complex.

A small part of a large flush is an active, peat-forming area with very soft to quaking ground and total Sphagnum cover of 51-75%. Much of the flush area is composed of a single large pool/lawn with a high cover of *S. cuspidatum* and smaller patches of *S. magellanicum*. Small hummocks of *Aulacomnium palustre* are present around the pool edge and dotted through the pool/lawn. Sphagnum hummocks around the edge of the pool were largely composed of *S. capillifolium*, while *S. papillosum* hummocks and *Eriophorum angustifolium* were common around lawns. *Pleurozium schreberi* and *Vaccinium oxycoccos* are also present on hummocks, while *Molinia caerulea* is present, though sparse, throughout. This active flush zone may have been more extensive before a recent fire event, which has severely damaged the vegetation in the western side of the area. All tall *Calluna vulgaris* here is burnt, and low Sphagnum hummocks severely damaged. A second active flush is located in old cutover at the south-eastern extremity of the site (Fernandez et al. 2014a,b).

Three swallow holes are seen at the western end of this flush and there is an underground stream feeding into these swallow holes from the north north-west. The vegetation in these areas is rich and indicative of increased mineral and nutrient availability.

Non-active raised bog habitat dominates most of the high bog surface. The driest and most disturbed marginal areas of the uncut high bog surface are typically dominated by species such as *Carex panicea*, *Calluna vulgaris*, *Trichophorum germanicum* and *Narthecium ossifragum*, which tend to form extensive mono-dominant swards. Further into the high bog, where the water levels are higher and more stable, the vegetation is less disturbed and more species-rich, and there is an increased Sphagnum cover (typically 25 to 50%). Pool areas are rare in these non-active high bog areas and where they occur they tend to be shallow and dominated by an algal mat with little Sphagnum cover.

1.3.2 Fauna of Flughany Bog

Snipe (*Gallinago gallinago*), red grouse (*Lagopus lagopus*) and curlew (*Numenius arquata*) have been reported as breeding on Flughany Bog in the past; however, the current status of these species here is not known.

The only mammal reported from the high bog is Irish hare (*Lepus timidus hibernicus*).

No other faunal observations have been reported from Flughany Bog, although it is likely that the bog supports many of the species listed in Section 1.1.3 above.
2 Conservation objectives

A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status of those habitats and species at a national level.

Conservation objectives for habitats are defined using attributes and targets that are based on parameters as set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions. Attributes and targets may change or become more refined as further information becomes available.

National Conservation Objectives for raised bog SACs have recently been published in the Draft National Raised Bog SAC Management Plan (DAHG 2014). The various attributes and the justification of appropriate targets used to define favourable conservation condition for ARB relevant to Flughany Bog SAC are discussed in the following sections.

2.1 Area

NPWS has commissioned a number of raised bog surveys between 1993 and the present—Kelly et al. (1995); Derwin & MacGowan (2000); Fernandez et al. (2005); Fernandez et al. (2006); Fernandez et al. (2014a). Mapping from these surveys has been used to derive the area of ARB for each bog as shown in Table 3. More recent surveys have been able to employ more precise and detailed mapping techniques and more standardised ecotope descriptions. NPWS undertook a review of data from earlier surveys in 2014 taking into account these improved techniques with the aim of providing more accurate figures for ARB. This in some cases has resulted in a change in ARB area for these earlier time periods (NPWS, unpublished data).

The national SAC target for the attribute ‘habitat area’ has been set at 2,590ha (DAHG 2014). This target is based on the estimated area of ARB (1,940ha) and DRB (650ha) present within the SAC network in 1994 (when the Habitats Directive came into effect).

The area of ARB at Flughany Bog in 1994 is estimated to have been 14.0ha, while the area of DRB is estimated to have been 6.6ha at that time (see Table 3). Using the same approach that has been adopted in setting the national SAC target, the site-specific target for Flughany Bog would equate to 20.6ha (sum of ARB and DRB in 1994). However, in setting the site-specific target the current hydro-ecological conditions on the bog (including cutover) have been considered in order to ensure that the target being set is based on a realistic appraisal of what is achievable as set out below.

The most recent monitoring survey of the bog estimated the area of ARB to be 11.4ha (Fernandez et al. 2014a,b). This represents a decline of 2.6ha (19%) during the period 1994-2012. An additional survey undertaken in 2005 confirms that this decline occurred during the period 1994-2005.

The current extent of DRB as estimated using a recently developed hydrological modelling technique, based largely on Light Detection and Ranging (LiDAR)\(^2\) data is 13.1ha (see DAHG 2014 for further details of the technique). This represents the area of the high bog, which does not currently contain ARB but has topographical conditions deemed suitable to support ARB (see Map 1 which shows the total area of current and modelled potential ARB). This area was further refined to 9.2ha by estimating the area that could be restored by blocking

\(^2\)LiDAR is a remote sensing technology that measures vertical surface elevation by illuminating a target with a laser and analysing the reflected light. This provides much more detailed topographical maps than can be collected by traditional surveying techniques.
drains on the high bog. This refinement was based on applying an efficacy factor (see DAHG 2014).

Based on the current assessment of the bog, it is therefore concluded that the maximum achievable target for ARB on the high bog is 20.6ha, which is the same as the estimated area at time of designation. It is important to note that this assumes no further decline of ARB due to impacting activities. Similarly, should the bog be significantly dependent on regional groundwater levels then any deepening of drains in the cutover could further impact the potential restoration of ARB on the high bog.

Table 3 Area of ARB and DRB recorded on the high bog at Flughany Bog in 1994, 2005, and 2012 (Source: Fernandez et al. 2014; NPWS, unpublished data)

<table>
<thead>
<tr>
<th></th>
<th>1994</th>
<th>2005</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB (ha)</td>
<td>14.0</td>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>DRB (ha)</td>
<td>6.6</td>
<td>Unknown</td>
<td>9.2</td>
</tr>
</tbody>
</table>

A recent eco-hydrological assessment of the cutover surrounding the high bog undertaken as part of the restoration planning process estimates that, by implementing appropriate management, an additional 3.0ha of ARB could be restored in this area. The long term achievable target for ARB on Flughany Bog is therefore set at 23.6ha which is 3.0ha more than the estimated area of ARB and DRB in 1994.

In conclusion, the site-specific target for the attribute habitat area is: **Restore area of active raised bog to 23.6ha, subject to natural processes.**

2.2 Range

At a national scale, range represents the geographic range that encompasses all significant ecological variations of the ARB habitat. The national SAC target for the attribute ‘range’ has been set as ‘not less than current range subject to natural processes’.

However, range, in the form of habitat distribution, may also be important at the site level, particularly within larger SACs, including those containing a number of individual bogs (i.e. complexes). The attribute therefore under the parameter of range is ‘Habitat distribution’. At the local level, it is important to conserve the variability and distribution of ARB across a raised bog SAC. This will help to ensure the diversity of the habitat is maintained while lessening the impact of localised damaging activities such as fire.

The conservation of ARB within Flughany Bog as set out in Section 2.1 above will contribute to safeguarding the national range of the habitat.

The ARB habitat at Flughany includes central and sub-central ecotopes, as well as active flush. A map showing the most recent distribution of ecotopes throughout Flughany Bog is presented in Map 2.

The site-specific target for the attribute habitat distribution is: **Restore the distribution and variability of active raised bog across the SAC.**

2.3 Structure and functions

Structure and functions relates to the physical components of a habitat (“structure”) and the ecological processes that drive it (“functions”). For ARB these include attributes such as the hydrological regime, water quality, habitat quality, species occurrence, elements of local
distinctiveness, marginal habitats, negative physical indicators, and negative species occurrence. As several of these attributes are inter-connected, they are all included in order to better define habitat quality in a meaningful way. In some cases, attribute targets are not quantified; however, as more detailed information becomes available (for example through further research), more measurable site-specific targets may be developed. Structure and functions attributes are expanded on in the sections below.

2.3.1 High bog area

On individual raised bogs adequate high bog is required to support the development and maintenance of ARB. Raised bog habitat that is classified as neither ARB nor DRB is still important particularly as a supporting habitat for those listed in Annex I of the Habitats Directive. It is an essential part of the hydrological unit which supports the ARB and DRB habitats. High bog is of value in its own right as a refuge for species characteristic of drier bog conditions as well as for providing a transitional zone between the Annex I habitats of the high bog and surrounding areas. Additional values for the maintenance of high bog include the preservation of its record of past environmental conditions and carbon storage. The area of high bog in the entire SAC network in 1994 was 10,740ha. The corresponding area in 2012 is 10,515ha – indicating that there has been a 225ha loss of high bog since 1994.

The national target for the attribute ‘high bog’ habitat is to ensure no decline in extent of high bog to support the development and maintenance of ARB.

The area of high bog within Flughany Bog SAC in 1994 was mapped as 143.8ha, while the corresponding area in 2012 is 143.7ha (based on interpretation of LiDAR and aerial photography flown in 2012), representing a minor loss of just 0.1ha of high bog (DAHG 2014). The extent of high bog within the SAC in 2012 is illustrated on Map 1.

The site-specific target for the attribute high bog is: No decline in extent of high bog necessary to support the development and maintenance of active raised bog.

2.3.2 Hydrological regime: water levels

Hydrological processes are key drivers of raised bog ecology. The different raised bog communities, assemblages and species are affected by various hydrological attributes. For ARB, mean water levels need to be near or above the surface of bog lawns for most of the year. Seasonal fluctuations should not exceed 20cm, and water level should be within 10cm of the surface, except for very short periods of time (Kelly & Schouten 2002). Gentle slopes that limit intermittent lateral losses of water (through surface run-off) and encourage sustained waterlogging are the most favourable to achieve these conditions. Such conditions may be maintained on steeper slopes in areas of focused flow (flushes).

The traditional view of water flowing across the bog laterally has been recently refined to also consider that water flows vertically through peat into the underlying substrate. Water loss, by this route, depends on the permeability of the material through which the water must flow and the difference in head (water level elevation) in the bog and underlying mineral substrate; larger differences encountered in higher permeability materials will result in greater losses. Although the proportion of water lost in this manner may be small, the sustained loss during prolonged dry periods may be sufficient to impact bog ecotopes. Drains extending into the mineral substrate in marginal areas surrounding the bog can lead to an increased gradient between the head in the peat and the head in the underlying substrate resulting in increased vertical water losses from the bog.
The most recent description of drainage at Flughany Bog is presented in Fernandez et al. (2014b) who reported that there are a total 13.2km of unblocked drains on Flughany Bog, most of which are reported as functional (9.8km) or reduced functional (2.7km). A further 0.7km of unblocked drains were reported as non-functional as they were infilled with vegetation; however, it is not known whether these drains are continuing to have an impact on high bog habitats. High bog drainage is likely to have lowered the water levels within the peat, resulting in drying out and subsidence of the high bog surface.

Cutover drains associated with either recently active or much older peat-cutting are present in several areas of cutover surrounding the high bog, although there has been very little peat-cutting at the site in recent years. Agricultural reclamation took place in many areas of the cutover in the past and maintenance of agricultural drains has been observed in recent years. Fernandez et al. (2014b) report that agricultural land maintenance was identified on the 2010 site aerial photographs, in a number of places adjacent to the high bog including a 300m stretch of drains approximately 100m to the north of the high bog, a 700m of drains immediately adjacent to the high bog on the southern side and 250m of drains adjacent to the north-eastern edge of the high bog.

Much of the knowledge regarding the hydrological requirements of raised bog communities in Ireland stems from the extensive ecological and hydrological work undertaken on Clara Bog since the early 1990s. The only available hydrological study for Flughany Bog is the work carried out by Kelly et al. (1995). The hydrochemistry survey carried out as part of this study identified that electrical conductivity (EC) values generally ranged from 200 - 250μS/cm in most of the cutover drains. EC values of ≤ 80μS/cm typically indicate the presence of bog water. Therefore these EC values suggest some influence from minerotrophic groundwater; although higher values would be expected since many of the cutover drains were reported to be situated within the mineral till layer. EC values in the river to the west of the site were in the region of 195μS/cm. A localised area of groundwater upwelling was identified at a till ridge in the centre of the site, with EC values of > 430μS/cm recorded.

Upwelling groundwater can present a risk as it can lead to a decline in groundwater head, which could potentially impact on water levels within the peat and lead to subsidence on the high bog. The risk of subsidence at Flughany Bog depends on the permeability of the underlying mineral substrate, which will influence the extent of impacts from changes to groundwater head. Geological mapping indicates that the bog is underlain by a thin-bedded calcareous shale, limestone bedrock unit, which is a locally important aquifer, as it is moderately productive only in local zones. Most of the northern section of the bog is underlain by a pale grey massive limestone unit, which is also a locally important aquifer, subject to karstification. Subsoil mapping indicates that sandstone till is the main mineral substrate in the areas surrounding the peat and therefore likely to be the main mineral substrate underlying the peat. The presence of a relatively productive bedrock unit as well as potentially permeable substrate suggests that a decline in groundwater head could result in significant impacts on the high bog through subsidence.

The site-specific target for the attribute hydrological regime – water levels is: **Restore appropriate water levels throughout the site.**

2.3.3 Hydrological regime: flow patterns

As outlined above, ARB depends on water levels being near or above the surface of bog lawns for most of the year. Long and gentle slopes are the most favourable to achieve these conditions. Changes to flow directions due to subsidence of bogs can radically change water regimes and cause drying out of high quality ARB areas and soak systems.
A map illustrating the slopes and drainage patterns on Flughany Bog based on a digital elevation model generated from LiDAR imagery flown in 2012 is presented in Map 3.

Slope and flow patterns indicate that Flughany Bog is a western/intermediate type raised bog, indicating that it shares features with blanket bogs, such as undulating terrain, and the absence of a distinct dome (Kelly et al. 1995). Slopes across most of the bog are relatively steep and flow patterns indicate areas of focussed flow coinciding with flush features. A mineral till ridge separates the southern section of the main lobe from the northern section.

It is thought that that there may have been a decline in groundwater head, as a result of marginal drainage, which has contributed to subsidence of the high bog surface. Any further deepening or maintenance of marginal drainage would further increase differences between regional groundwater levels and those in the peat. The increased infiltration rates arising from this process can be anticipated to further damage the bogs water balance, leading to additional damage to existing areas of active raised bog.

The site-specific target for the attribute hydrological regime – flow patterns is: Restore, where possible, appropriate high bog topography, flow directions and slopes.

2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas)

Transitional zones between raised bogs and surrounding mineral soils are typically cutover bog and drained lagg zones. The maintenance / restoration of these areas will help to maintain hydrological integrity of ARB and DRB, and support a diversity of other wetland habitats (e.g. wet woodland, swamp and fen) as well as species that they sustain. In some cases, these areas may assist in reducing further losses of ARB / DRB on the high bog and in time could develop into active peat forming habitats (including ARB - see Section 2.1 above). These transitional zones, once restored, can provide ecosystem services through flood attenuation and water purification to downstream areas and potentially increase the carbon storage / sink function of the bog. The estimated extent of such transitional areas within the SAC network is 3,000ha (DAHG 2014). The national target for these transitional areas is to maintain / restore semi-natural habitats with high water levels around as much of the bog margins as necessary.

The transitional areas at Flughany Bog include a range of different habitat types (e.g. improved grassland, wet grassland, cutover bog and scrub). The total area of cutover bog within the Flughany Bog SAC is estimated to be circa 104ha. The development of habitats within cutover areas depends on a number of factors including prevailing land-use, topography, up-welling regional groundwater, and drainage.

Cutover occurs all around the bog with old turbarv roads allowing easy access along the eastern edge.

The site-specific target for the attribute transitional areas is: Restore adequate transitional areas to support / protect active raised bog and the services it provides.

2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland

A diverse good quality microtopography on raised bogs consists of *Sphagnum* dominated pools, hollows, lawns and hummocks, which support the highest diversity of species including hummock indicators: *Sphagnum fuscum* and *S. austinii*; pool indicators: *S. cuspidatum, S. denticulatum*, and indicators of lack of burning events e.g. some lichen species (*Cladonia* spp.) (Cross 1990).
The national target for the attribute vegetation quality has been set as “to maintain / restore sufficient high quality bog vegetation (i.e. central ecotope and / or flushes / soaks). At least 50% of ARB habitat should be central ecotope and / or flush / soaks.” Bog woodland is also regarded as a desirable variant of ARB as it adds species and structural diversity to the habitat and therefore, where relevant, also contributes to the 50% target at site level.

A summary description of the vegetation of Flughany Bog is presented in Section 1.3.1 above. The vegetation and habitats of the bog have been described in more detail by Kelly et al. (1995) and Fernandez et al. (2005 & 2014).

The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4 and on Map 2. During the most recent surveys, the area of ARB comprised central and sub-central ecotopes, and active flush. The target for this attribute is 11.8ha of high quality ARB (50% of ARB target area (23.6ha)).

<table>
<thead>
<tr>
<th>Ecotope</th>
<th>2005</th>
<th>% of total ARB</th>
<th>2012</th>
<th>% of total ARB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-central ecotope</td>
<td>9.7</td>
<td>85.1</td>
<td>9.7</td>
<td>85.1</td>
</tr>
<tr>
<td>Central ecotope</td>
<td>1.4</td>
<td>12.3</td>
<td>1.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Soaks / active flush</td>
<td>0.2</td>
<td>2.6</td>
<td>0.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Total ARB</td>
<td>11.4</td>
<td></td>
<td>11.4</td>
<td></td>
</tr>
</tbody>
</table>

The site-specific target for the attribute vegetation quality is: **Restore 11.8ha of central ecotope/active flush/soaks/bog woodland as appropriate.**

2.3.6 Vegetation quality: microtopographical features

The characteristic microtopographical features of raised bogs are described in Section 1.1.1 above.

Hummock, hollow and pool microtopography is well developed on the southern part of Flughany Bog (Kelly et al. 1995; Fernandez et al. 2014a,b).

The site-specific target for the attribute microtopographical features is: **Restore adequate cover of high quality microtopographical features.**

2.3.7 Vegetation quality: bog moss (Sphagnum) species

Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical microtopographical features as described in Section 2.3.6 above.

The vegetation of a typical raised bog that is still hydrologically intact is characterised by the dominance of several species of Sphagna and dwarf ericoid shrubs. The most abundant species are *Sphagnum capillifolium*, *S. austinii* and *S. papillosum* which form hummocks or low ridges. *Sphagnum fuscum* may also form hummocks (Cross 1990). On the flats *Sphagnum magellanicum*, *S. papillosum*, *S. tenellum*, and *S. subniten* are the key species. *Sphagnum pulchrum* may also be dominant in flats on western raised bogs. In permanently waterlogged hollows *Sphagnum cuspidatum* and *S. denticulatum* (western bogs) occur. *Sphagnum fallax* is common where there is slight flushing (Cross 1990). The most commonly occurring *Sphagnum* moss species that occur on raised bogs in Ireland are presented in Table 5 along with a summary of their ecology and typical contribution to peat formation.
Kelly *et al.* (1995) and Fernandez *et al.* (2014a,b) provide information on the occurrence of *Sphagnum* species throughout Flughany Bog.

Table 5 *Sphagnum* species typically associated with raised bog ecosystems in Ireland. Ecology as described by Laine *et al.* (2009) with minor modifications.

<table>
<thead>
<tr>
<th>Species</th>
<th>Ecology</th>
<th>Peat capacity forming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnum austinii</td>
<td>Hummock species</td>
<td>High</td>
</tr>
<tr>
<td>Sphagnum capillifolium</td>
<td>Forms small hummocks and carpets</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum cuspidatum</td>
<td>Pool and hollow species</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum denticulatum</td>
<td>Pool and hollow species</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum fallax</td>
<td>Occurs in lawns and carpets, shade tolerant. Indicative of some nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum fuscum</td>
<td>Forms dense low and wide, and occasionally high hummocks</td>
<td>High</td>
</tr>
<tr>
<td>Sphagnum magellanicum</td>
<td>Lawn species forming carpets and low hummocks</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum palustre</td>
<td>Forms hummocks and dense carpets, often in shaded conditions. Indicative of nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum papillosum</td>
<td>Lawn, hollow, and low hummock species</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum pulchrum</td>
<td>Grows in lawns and hollows, more typical of western bogs</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum squarrosum</td>
<td>Forms carpets and small mounds. Indicative of nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum subnitens</td>
<td>Occurs as individual shoots or small cushions and lawns. Tolerant of minerotrophic conditions</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum tenellum</td>
<td>Occurs as single shoots or weak cushions, typically in disturbed patches of the bog surface</td>
<td>Low</td>
</tr>
</tbody>
</table>

The site-specific target for the attribute bog moss (*Sphagnum*) species is: **Restore adequate cover of bog moss (*Sphagnum*) species to ensure peat-forming capacity.**

2.3.8 Typical ARB species: flora

Flughany Bog supports the full complement of plant species typically associated with a western raised bog (see Section 1.1.2 above).

The key typical species that are indicative of high quality raised bog include *Sphagnum fuscum* and *S. austinii* which are associated with hummocks and *S. cuspidatum* and *S. denticulatum* which are associated with pools and hollows. All of these species have been reported from Flughany Bog (Fernandez *et al.* 2014a,b).

The site-specific target for the attribute typical bog flora is: **Restore, where appropriate, typical active raised bog flora.**

2.3.9 Typical ARB species: fauna

As mentioned in Section 1.1.3, a list of typical fauna specific to ARB has not been developed and the table contains species that use the wider raised bog habitat. This may be refined as more information becomes available.

Flughany Bog is likely to support a range of fauna species that are typically associated with
raised bog habitat (see Section 1.1.3 above).

The site-specific target for the attribute typical bog fauna is: **Restore, where appropriate, typical active raised bog fauna.**

2.3.10 Elements of local distinctiveness

A range of features may be associated with raised bogs which add to the scientific, historical, or conservation value of a bog. These can include geological, topographical, archaeological and hydrological features (e.g. soaks, lakes, flushes) and noteworthy species of flora and fauna (Cross 1990). Notable species of flora and fauna include those listed in the Habitats and Birds Directives, Red-listed species, and other rare or localised species. For this attribute, features that are particularly associated with ARB are relevant.

2.3.10.1 Site features

There are several active and inactive flushes on the high bog, some of which are associated with swallow holes.

2.3.10.2 Rare flora

No rare flora records have been reported from Flughany Bog.

2.3.10.3 Rare fauna

As mentioned above, there is limited current documented site-specific data relating to species that are particularly associated with ARB, including rare species.

In conclusion, the site-specific target for the attribute elements of local distinctiveness is: **Maintain features of local distinctiveness, subject to natural processes.**

2.3.11 Negative physical indicators

Raised bogs that have been damaged by marginal cutting and drainage, reclamation for agriculture, forestry activities, fire, surface drainage, or the lowering of regional water tables show a range of negative physical indicators (Cross 1990). Such negative physical features of ARB include: bare peat, algae dominated pools and hollows, marginal cracks, tear patterns, subsidence features such as dry peat and / or mineral mounds / ridges emerging or expanding, and burning evidence.

During a survey undertaken in 2012, fire damage, in the form of bare peat and damage to hummocks, was recorded throughout most (estimated at 90%) of the bog (Fernandez et al. 2014a,b). This fire caused moderate to severe damage to vegetation throughout the affected areas. Only the most easterly (previously unsurveyed) part of the site was unaffected by this fire episode.

The site-specific target for the attribute negative physical indicators is: **Negative physical features absent or insignificant.**

2.3.12 Vegetation composition: native negative indicator species

Indicators of disturbance on a raised bog include species indicative of drying out conditions such as abundant *Narthecium ossifragum* and *Trichophorum germanicum*; *Eriophorum vaginatum* forming tussocks; abundant *Sphagnum magellanicum* in pools previously dominated by species typical of very wet conditions (e.g. *Sphagnum cuspidatum*). Indicators of frequent burning events include abundant *Cladonia floerkeana* and high cover of *Carex panicea* (particularly in the true midlands raised bog type).
The site-specific target for the attribute native negative indicator species is: **Native negative indicator species at insignificant levels.**

2.3.13 Vegetation composition: non-native invasive species

Non-native invasive species that can commonly occur on raised bog habitats include: *Pinus contorta*, *Rhododendron ponticum*, and *Sarracenia purpurea* (Cross 1990).

Non-native species are not a major issue on Flughany Bog although a single *Rhododendron ponticum* plant, in the south-east corner of the site, was recorded during the latest survey (Fernandez et al. 2014a,b).

The site-specific target for the attribute non-native invasive species: **Non-native invasive species at insignificant levels and not more than 1% cover.**

2.3.14 Air quality: nitrogen deposition

Peatlands are highly sensitive to air pollution, particularly nitrogen deposition. Reactive nitrogen from fossil fuel combustion or intensive agriculture can contaminate rain and snow, causing soil acidification, nutrient enrichment, and a decline in species that are sensitive to these conditions. There is evidence that the combined impact of elevated nitrogen deposition and a warming climate could exceed the sum of the individual stressors and lead to a dramatic decline in the biodiversity of mosses, sensitive vascular plants, and microbes, potentially leading to catastrophic peat loss (PEATBOG project - http://www.sste.mmu.ac.uk).

Air pollution can change both the species composition and the functioning of peatlands. The primary atmospheric pollutant from the Industrial Revolution to the mid 1970s was sulphur deposition, but levels have since greatly declined. Reactive nitrogen (N) deposition (primarily NO3- and NH4+), which can both acidify and eutrophy, became significantly elevated over a widespread area in the early to mid-20th century and is now the major pollutant in atmospheric deposition across most of Europe (Fowler et al. 2005).

Nitrogen is commonly a limiting terrestrial nutrient and in un-impacted peatlands it is tightly cycled. With long-term elevated N deposition, vegetation composition typically shifts toward species adapted to higher nutrient levels, with an overall loss of diversity (Malmer & Wallén 2005). In peatlands, field experiments with N additions within the current European range have shown significant declines in bryophyte species-richness and productivity, and shifts in composition toward vascular plants (Bobbink et al. 1998; Bubier et al. 2007). Community shifts toward more nitrophilous bryophytes in N-enriched regions such as parts of the Netherlands are also well documented (Greven 1992). In the UK, both a general survey of peatlands across the country (Smart et al. 2003), and a targeted study of *Calluna* moorland (Caporn et al. 2007) showed significant inverse relationships between levels of nitrogen deposition and species richness, with bryophytes particularly impacted. Changes in the vegetation also impact below-ground communities and biogeochemical processes.

Moderate increases in N deposition from a low level may increase *Sphagnum* and vascular plant productivity without an equal increase in decomposition rates, leading to enhanced carbon accumulation (Turunen et al. 2004). However, shifts in species composition from bryophytes to vascular plants may increase the production of easily-decomposable plant material, leading to higher rates of decomposition, and reduced carbon accumulation (Lamers et al. 2000; Bubier et al. 2007).

The particular sensitivity of nutrient-poor ombrotrophic peatlands to nitrogen enrichment is reflected in the low critical load threshold of between 5 and 10kg N/ha/yr for these ecosystems (Bobbink & Hettelingh 2011), a level which is exceeded over a significant portion
of their range. An Irish study during the late 1990s undertaken by Aherne & Farrell (2000) concluded that total N deposition shows a strong east-west gradient, with lowest deposition in the west at 2kg N/ha/yr and highest in the east and south-east at 20kg N/ha/yr. Average N deposition over the Republic of Ireland was estimated to be approximately 12kg N/ha/yr. The study also concluded that the Critical Load Threshold for N was exceeded in at least 15% of ecosystems studied. The critical load applied to peatland ecosystems by Aherne & Farrell (2000) was 10kg N/ha/yr. This is in line with the recommendation by Bobbink & Hettelingh (2011) that the critical load should be set at the high end of the range in areas of high precipitation and at the low end of the range in areas of low precipitation assuming that Ireland represents a high precipitation area.

It is recommended in the case of Flughany Bog that the level of N deposition should not exceed the low end of the range i.e. 5kg N/ha/yr. This recommendation is based on a precautionary approach, as the evidential basis for setting a higher level is not particularly strong as alluded to by Payne (2014). Total N deposition in the vicinity of Flughany Bog as reported by Henry & Aherne (2014) is 8.2kg N/ha/yr.

The site-specific target for the attribute air quality is: Air quality surrounding bog close to natural reference conditions. The level of N deposition should not exceed 5kg N/ha/yr.

2.3.15 Water quality

Ombrotrophic peat waters found on the surface of raised bogs are characterised by low pH values (pH < 4.5) (Moore & Bellamy 1974) and also have low values of electrical conductivity. This is due to the fact that the raised bog system derives its mineral supply from precipitation, which is usually acidic and low in nutrients. Raised bog vegetation exchanges cations with protons to further reduce the pH.

Hydrochemistry varies in the areas surrounding a raised bog. Locally, conditions may be similar to the high bog due to a dominance of water originating from the bog. However, elsewhere in the marginal areas, there may be increased mineral and nutrient content of the water due to regional groundwater influences, run-off from surrounding mineral soils, and the release of nutrients through oxidation of peat resulting from reduced water levels.

The hydrochemistry of Flughany Bog has been reported by Kelly et al. (1995). The survey identified that electrical conductivity (EC) values generally ranged from 200 - 250µS/cm in most of the cutover drains suggesting some influence from minerotrophic groundwater; although higher values would be expected since many of the cutover drains were reported to be situated within the mineral till layer. EC values in the river to the west of the site were in the region of 195µS/cm. A localised area of groundwater upwelling was identified at the till ridge in the centre of the site, with EC values of > 430µS/cm recorded.

The site-specific target for the attribute water quality is: Water quality on the high bog and in transitional areas close to natural reference conditions.
3 References

Flynn, C. (2014) Nocturnal Lepidoptera of Midland Raised Bogs. A thesis submitted to the National University of Ireland, Maynooth for the Degree of Master of Science (MSc.).

years in relation to supply rate and vegetation type. Oikos, 109: 539–554.

Map 1: Extent of potential active raised bog on Flughany Bog.
Map 2: Distribution of raised bog ecotopes on Flughany Bog.
Map 3: Digital elevation model and drainage patterns at Flughany Bog.