Contents

1 INTRODUCTION ...1
 1.1 RAISED BOGS ..2
 1.1.1 Typical Flora of Irish Raised Bogs ...5
 1.1.2 Typical Fauna of Irish Raised Bogs ...6
 1.2 HABITATS DIRECTIVE RAISED BOG HABITATS IN IRELAND ...9
 1.3 CARROWBEHY/CAHER BOG SAC ..10
 1.3.1 Flora of Carrowbehy/Caher Bog ..12
 1.3.2 Fauna of Carrowbehy/Caher Bog ..12

2 CONSERVATION OBJECTIVES ...13
 2.1 AREA ..13
 2.2 RANGE ...14
 2.3 STRUCTURE AND FUNCTIONS ...15
 2.3.1 High bog area ...15
 2.3.2 Hydrological regime: water levels ...15
 2.3.3 Hydrological regime: flow patterns ...17
 2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas) ..17
 2.3.5 Vegetation quality: central ecotope, active flush, soaks ...18
 2.3.6 Vegetation quality: microtopographical features ...19
 2.3.7 Vegetation quality: bog moss (Sphagnum) species percentage cover19
 2.3.8 Typical species: bog flora ..20
 2.3.9 Typical species: bog fauna ...20
 2.3.10 Elements of local distinctiveness ..20
 2.3.10.1 Site features ..21
 2.3.10.2 Rare flora ..21
 2.3.10.3 Rare fauna ..21
 2.3.11 Negative physical indicators ...21
 2.3.12 Vegetation composition: native negative indicator species21
 2.3.13 Vegetation composition: non-native invasive species ..22
 2.3.14 Air quality: nitrogen deposition ...22
 2.3.15 Water quality ..23

3 REFERENCES ..24

Map 1: Extent of potential active raised bog on Carrowbehy/Caher Bog.

Map 2: Distribution of raised bog ecotopes on Carrowbehy/Caher Bog.

Map 3: Digital elevation model and drainage patterns at Carrowbehy/Caher Bog.
1 Introduction

This document presents a summary of the background information that has informed the process of setting the Site-Specific Conservation Objective in relation to the priority Annex I habitat ‘active raised bog’ (habitat code 7110) (hereafter referred to as Active Raised Bog (ARB)), for which Carrowbehy/Caher Bog Special Area of Conservation (SAC) has been designated.

Carrowbehy/Caher Bog SAC is also designated for two other related Annex I habitats, namely; ‘degraded raised bogs still capable of natural regeneration’ (habitat code 7120) (hereafter referred to as Degraded Raised Bog (DRB)) and ‘depressions on peat substrates of the Rhynchosporion’ (habitat code 7150). Based on the close ecological relationship between these three habitats types, it is not necessary to set specific Conservation Objectives for all three habitats individually. It is considered that should favourable conservation condition for ARB be achieved on the site, then, as a consequence, favourable conservation condition for the other two habitats would also be achieved.

1.1 Raised Bogs

Raised bogs are accumulations of deep peat (typically 3-12m) that originated in shallow lake basins or topographic depressions. The name is derived from the elevated surface, or dome, that develops as raised bogs grow upwards through the accumulation of peat; the domed effect is often exaggerated when the margins of a bog are damaged by turf cutting or drainage, and are drying out. Raised bogs are most abundant in the lowlands of central and mid-west Ireland.

Irish raised bogs are classified into two sub-types based on phytosociological and morphological characteristics (Schouten, 1984): 1. Western or intermediate raised bogs, and 2. True midland or eastern raised bogs. In terms of overall morphology, the main difference between these two raised bog types is that while eastern raised bogs tended to stay more confined to the depressions in which they were formed, western raised bogs tended to grow out beyond their original basin, presumably a result of the higher rainfall levels (Cross 1990). In terms of vegetation differences the most obvious difference between the two bog types is the presence of a number of oceanic plant species on western raised bogs which are absent from the true midland raised bogs. The liverwort species *Pleurozia purpurea*¹ and the moss species *Campylopus atrovirens* grow on western raised bogs but not on eastern raised bogs; similarly, *Carex panicea* is generally more common on the high bog surfaces of western raised bogs (Schouten 1984). All of these plant species are widespread in the low-level Atlantic blanket bogs and their presence in western raised bogs is presumed to be due to the higher rainfall levels and greater rain-derived nutrient fluxes.

Exploitation has been extensive and none of the remaining Irish raised bogs are completely intact (Cross 1990). It is estimated that less than 10% of the original raised bog habitat in Ireland is in a near intact state (uncut), with less than 0.5% continuing to support ARB (DAHG 2014). Excavated face banks, whether active or inactive, are a common feature around the margins. Any areas where part of the bog has been removed are termed cutover bog, with the remaining area referred to as high bog or intact bog. In a natural state, raised bogs are circled by a wetland fringe, known as the lagg zone, which is usually characterised by fen

¹ Note on species nomenclature: *In the case of plant species, only scientific names are used throughout the main text while common English names are included in tables. In the case of faunal species, common English names are used throughout the text (where known) together with scientific names.*
communities. In Ireland, most laggs have been lost through drainage and land reclamation (Fossitt 2000).

The surface of a relatively intact raised bog is typically wet, acid, deficient in plant nutrients, and supports specialised plant communities that are low in overall diversity and comprising species adapted to the biologically harsh conditions. The vegetation is open, treeless and bog mosses or Sphagnum species dominate the ground layer. Small-scale mosaics of plant communities are characteristic and reflect the complex microtopography of hummocks and hollows on the bog surface (see Section 1.1.1 below). Raised bogs are driest at the margins and wetness generally increases towards the centre of the peat mass where well-developed pool systems are most likely to occur.

Raised bogs may also contain soaks and flushes (wet ‘active’ or dry ‘inactive’) due to the increased supply of nutrients over time through concentrated surface flows, or where there are links with regional groundwater or the underlying mineral substratum. Slight mineral enrichment and/or constant through flow of water provide conditions suitable for a range of species that are not typically associated with other areas of raised bog.

When damaged by peat extraction or drainage, the water table in the peat drops and the bog surface becomes relatively dry; pools are rare or absent, cover of bog mosses is greatly reduced and Calluna vulgaris increases in abundance. The drop in water table causes the peat to compress under its own weight causing the bog surface to deform. Greater deformation occurs closest to areas where the water table has dropped. This increases the slope of the bog surface causing rain falling on the ground surface to flow off the bog more quickly. The effect is normally greatest around the margins and in a typical situation surface wetness increases towards the centre of the bog. Trees such as Betula pubescens and Pinus sylvestris frequently invade the drier cut margins, but may also occur in flushed areas.

In Ireland, the Annex I habitat ARB is currently considered to be in unfavourable bad conservation status principally as a result of marginal turf cutting, more recent semi-industrial peat extraction, and associated drainage effects caused by these activities (NPWS 2008; 2013). The lowering of regional groundwater levels is also known to have had an effect on some sites. Fires associated with turf cutting, dumping, or agricultural activities may also adversely affect the condition of the habitat.

1.1.1 Raised Bogs Microtopography

Raised bogs are typically treeless and are characterised by a distinctive vegetation dominated by bog mosses (Sphagnum), sedges, and dwarf shrubs, all of which are adapted to waterlogged, acidic and exposed conditions. Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical surface features of hummocks, hollows, lawns, and pools. The wettest bogs, which have extensive pool systems, have the greatest variety of plant and animal life and support a range of specialist species.

The following terms that describe microtopography are generally accepted in the study of mire ecology (Gore 1983). A schematic diagram showing the typical microtopographical divisions is presented in Figure 1.

Pools

Depressions in the bog surface where the water table remains above the surface level all year around or below surface level for only a very short period of time. They are characterised by the presence of aquatic plant species such as Sphagnum cuspidatum, S. denticulatum, and Cladopodiella fluitans. In more degraded scenarios or where high seasonal water fluctuation occurs, the pools contain open water and/or algae. Tear pools are
found on bogs where internal tensions, due to mass movement of peat, has taken place within the high bog and has caused the development of elongated pools. These are frequently found on western bogs and may be natural or anthropogenic in origin.

Hollows

These are shallow depressions (less than 5cm deep) on the bog surface where surface water collects, or where the water table reaches or lies just above ground level, depending on seasonal conditions. They are often filled with *Sphagnum* species such as *S. papillosum* and *S. cuspidatum*. They take many forms but are often eye shaped. Marginal hollows tend to be elongated as they are focused points for surface water run-off. They are often dominated by *Nartheicum ossifragum*.

Lawns

These are shallow hollows or flat areas where one species dominates to form a lawn. This is frequently a *Sphagnum* species, such as *Sphagnum magellanicum*, or *S. papillosum* which can completely fill in a hollow to form a small lawn.

Flats

These are more or less flat areas which are intermediate between hollow and hummock communities. They tend to be drier than the above situations.

Hummocks

These are mounds on the bog surface which can range from a few centimetres to more than one metre in height. They are usually composed mainly of *Sphagnum* species, such as *Sphagnum magellanicum*, *S. capillifolium*, *S. austinii* and *S. fuscum* but other bryophyte species such as *Hypnum jutlandicum* and *Leucobryum glaucum* are also important, especially as the hummock grows taller and becomes drier. *Calluna vulgaris* is another important element, as it flourishes where the water table is not at surface level (Kelly & Schouten 2002).

Figure 1 Raised bog microtopographical divisions on the high bog surface (reproduced from Kelly & Schouten 2002).
1.1.2 Typical Flora of Irish Raised Bogs

Raised bogs are characterised by a distinctive vegetation dominated by a variety of mosses (e.g. *Sphagnum* spp., *Hypnum* spp., *Racomitrium* spp.), sedges and grass-like species (e.g. *Eriophorum* spp., *Rhynchospora* spp., *Narthecium ossifragum*, *Molinia caerulea* and *Carex* spp.), and dwarf shrubs (e.g. *Calluna vulgaris*, *Erica tetralix*, *Vaccinium* spp. and *Empetrum nigrum*). In addition to these groups, a number of other species characterise raised bogs including carnivorous plants (e.g. *Drosera* spp., *Utricularia* spp.), lichens of both the bog surface and epiphytes on the stems of dwarf shrubs and the occasional trees on bogs (e.g. *Cladonia* spp., *Usnea* spp.). Herbaceous plants are not a significant element on raised bogs and include a few commonly occurring species such as *Menyanthes trifoliata*, *Pedicularis sylvatica*, and *Potentilla erecta* (Cross 1990).

Drier areas and hummocks usually support *Calluna vulgaris*, *Eriophorum vaginatum*, *Trichophorum germanicum*, *Erica tetralix*, lichens (*Cladonia* spp.), bog mosses (*Sphagnum capillifolium*, *S. austini*, *S. fuscum*, *S. papillosum*) and other mosses (*Dicranum scoparium*, *Leucobryum glaucum*). Wet hollow areas and pools are characterised by *Eriophorum angustifolium*, *Rhynchospora alba*, *Narthecium ossifragum*, *Drosera* spp., *Menyanthes trifoliata*, bladderworts (*Utricularia* spp.) and bog mosses (*Sphagnum cuspidatum*, *S. denticulatum* and *S. magellanicum*).

A list of flora species that are regarded as being typical of ARB habitat in Ireland is presented in Table 1. A number of these typical species would have a restricted distribution and do not occur throughout the range of the habitat in Ireland (see above), therefore only a subset of these species would be expected to be present on any individual bog.
Table 1 Flora species typically associated with active raised bog in Ireland (after NPWS 2013). *Species list is based on vegetation communities defined by Kelly (1993) and Kelly & Schouten (2002).*

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bog rosemary</td>
<td>Andromeda polifolia</td>
</tr>
<tr>
<td>Bog bead moss</td>
<td>Aulacomnium palustre</td>
</tr>
<tr>
<td>Bristly Swan-neck moss</td>
<td>Campylopus atrovirens*</td>
</tr>
<tr>
<td>Lichen</td>
<td>Cladonia ciliata</td>
</tr>
<tr>
<td>Lichen</td>
<td>Cladonia portentosa</td>
</tr>
<tr>
<td>Long leaved sundew</td>
<td>Drosera anglica</td>
</tr>
<tr>
<td>Intermediate leaved sundew</td>
<td>Drosera intermedia*</td>
</tr>
<tr>
<td>Round leaved sundew</td>
<td>Drosera rotundifolia</td>
</tr>
<tr>
<td>Common cotton grass</td>
<td>Eriophorum angustifolium</td>
</tr>
<tr>
<td>Hare’s tail cotton grass</td>
<td>Eriophorum vaginatum</td>
</tr>
<tr>
<td>Large white moss</td>
<td>Leucobryum glaucum</td>
</tr>
<tr>
<td>Bogbean</td>
<td>Menyanthes trifoliata</td>
</tr>
<tr>
<td>Bog asphodel</td>
<td>Narthecium ossifragum</td>
</tr>
<tr>
<td>Purple spoonwort*</td>
<td>Pleurozia purpurea*</td>
</tr>
<tr>
<td>Woolly fringe moss*</td>
<td>Racomitrium lanuginosum*</td>
</tr>
<tr>
<td>White beak-sedge</td>
<td>Rhynchospora alba</td>
</tr>
<tr>
<td>Austin’s bog moss</td>
<td>Sphagnum austinii</td>
</tr>
<tr>
<td>Red bog moss</td>
<td>Sphagnum capillifolium</td>
</tr>
<tr>
<td>Feathery bog moss</td>
<td>Sphagnum cuspidatum</td>
</tr>
<tr>
<td>Cow-horn bog moss*</td>
<td>Sphagnum denticulatum*</td>
</tr>
<tr>
<td>Rusty bog moss</td>
<td>Sphagnum fuscum</td>
</tr>
<tr>
<td>Magellanic bog moss</td>
<td>Sphagnum magellanicum</td>
</tr>
<tr>
<td>Papillose bog moss</td>
<td>Sphagnum papillosum</td>
</tr>
<tr>
<td>Golden bog moss*</td>
<td>Sphagnum pulchrum*</td>
</tr>
<tr>
<td>Lustrous bog moss</td>
<td>Sphagnum subnitens</td>
</tr>
<tr>
<td>Bladderwort</td>
<td>Utricularia minor</td>
</tr>
<tr>
<td>Cranberry</td>
<td>Vaccinium oxycoccos</td>
</tr>
</tbody>
</table>

Notes: * Species more typical of western raised bog sites.

1.1.3 Typical Fauna of Irish Raised Bogs

Raised bogs are extremely nutrient poor ecosystems. Acidic, waterlogged and exposed conditions make them an unattractive habitat for animal life. As a consequence they are relatively poor both in terms of species diversity and population densities. Many species are opportunists, vagrant or temporary rather than specialists, but nonetheless may have an important impact on the ecosystem through nutrient imports and exports or other interactions (Cross 1990). A list of fauna species that would be typically associated with raised bog habitat in Ireland is presented in Table 2. The species listed are not confined to ARB and most, if not all, will use other areas of the bog and surrounding habitats.

Raised bog is unsuitable habitat for many vertebrates due to the lack of available foraging and suitable breeding places. The Irish hare is the only mammal commonly occurring. The common frog is the most common vertebrate predator.

Although 18 species of birds have been reported breeding on raised bogs (Wilson 1990) many of these species utilise the bog as a nesting habitat only. They are dependent on other neighbouring habitats such as open water bodies, callows and wet grassland particularly for
feeding. Just a few species of bird, including meadow pipit (*Anthus pratensis*), skylark (*Alauda arvensis*) and curlew (*Numenius arquata*) complete their full breeding cycle on the bog and the first two species are the commonest species occurring (Bracken *et al.* 2008). Red grouse (*Lagopus lagopus*) must also be included as a typical bog species, occurring year round as a resident. Red grouse and curlew have declined significantly on across raised bogs in recent times. BirdWatch Ireland have published an Action Plan for Raised Bog Birds in Ireland which lists 13 species of conservation concern that are associated with Raised Bogs (O'Connell 2011). A recent review of birds of conservation concern in Ireland has since added meadow pipit (*Anthus pratensis*) to the red (most endangered) list of Birds of Conservation Concern in Ireland (BoCCI) (Colhoun & Cummins 2013).

Our knowledge of the invertebrate assemblages associated with Irish raised bogs remains incomplete (particularly micro-invertebrate species) with few studies undertaken (Reynolds 1984a; Reynolds 1984b; Reynolds 1985; De Leeuw 1986; O Connor *et al.* 2001; Crushell *et al.* 2008; Hannigan & Kelly-Quinn 2011; Wisdom & Bolger 2011; Nolan 2013). Van Duinen (2013) highlights the importance of structural diversity at various spatial scales (e.g. micro-scale of hummock hollow topography to macro-scale which would include the landscape setting of the bog, see Schouten (2002)) as a prerequisite for hosting the full species diversity of raised bog landscapes.

A recent study of Lepidoptera associated with raised bogs identified two species that appear to be characteristic of higher quality raised bog habitat, namely bordered grey (*Selidosema brunnearia* (Villers 1789)) and light knot grass (*Acronicta menyanthidis* (Esper, 1789)) (Ciara Flynn pers. comm.).

Recent research on spiders has revealed that a number of species are known to occur in Ireland only on raised bog habitats, all of which are considered local/uncommon or rare across Europe (Myles Nolan pers. comm.). Five of these species that can be considered useful indicators of ARB include: *Glyphesis cottonae* (La Touche 1945), *Walckenaeria alticeps* (Denis 1952), *Satilatlas britteni* (Jackson 1913), *Pirata piscatorius* (Clerck 1757), and *Minicia marginella* (Wider 1834) (Myles Nolan pers. comm.).

The information currently available on other invertebrate groups of peatland systems in Ireland is not sufficient to allow a determination of many species that are typically associated with or may be characteristic of higher quality ARB. A selection of invertebrate species and species groups that are known to be typically associated with raised bogs are presented in Table 2.
Table 2 Fauna species typically associated with raised bog ecosystems in Ireland (after O’Connell 1987; Cross 1990; Renou-Wilson et al. 2011; Bracken & Smiddy 2012).

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammal species</td>
<td></td>
</tr>
<tr>
<td>Irish hare</td>
<td>Lepus timidus hibernicus</td>
</tr>
<tr>
<td>Otter</td>
<td>Lutra lutra</td>
</tr>
<tr>
<td>Pygmy shrew</td>
<td>Sorex minutus</td>
</tr>
<tr>
<td>Fox</td>
<td>Vulpes vulpes</td>
</tr>
<tr>
<td>Bird species</td>
<td></td>
</tr>
<tr>
<td>Skylark</td>
<td>Alauda arvensis</td>
</tr>
<tr>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
</tr>
<tr>
<td>Greenland white-fronted goose</td>
<td>Anser albirostris flavirostris</td>
</tr>
<tr>
<td>Meadow pipit</td>
<td>Anthus pratensis</td>
</tr>
<tr>
<td>Hen harrier</td>
<td>Circus cyaneus</td>
</tr>
<tr>
<td>Cuckoo</td>
<td>Cuculus canorus</td>
</tr>
<tr>
<td>Merlin</td>
<td>Falco columbarius</td>
</tr>
<tr>
<td>Kestrel</td>
<td>Falco tinnunculus</td>
</tr>
<tr>
<td>Snipe</td>
<td>Gallinago gallinago</td>
</tr>
<tr>
<td>Red grouse</td>
<td>Lagopus lagopus</td>
</tr>
<tr>
<td>Curlew</td>
<td>Numenius arquata</td>
</tr>
<tr>
<td>Golden plover</td>
<td>Pluvialis apricaria</td>
</tr>
<tr>
<td>Lapwing</td>
<td>Vanellus vanellus</td>
</tr>
<tr>
<td>Reptiles and amphibians</td>
<td></td>
</tr>
<tr>
<td>Common lizard</td>
<td>Lacerta vivipara</td>
</tr>
<tr>
<td>Common frog</td>
<td>Rana temporaria</td>
</tr>
<tr>
<td>Typical invertebrates</td>
<td></td>
</tr>
<tr>
<td>Black slug</td>
<td>Arion ater</td>
</tr>
<tr>
<td>Large heath butterfly</td>
<td>Coenonympha tullia</td>
</tr>
<tr>
<td>Marsh fritillary butterfly</td>
<td>Euphydryas aurinia</td>
</tr>
<tr>
<td>Bog-pool spider</td>
<td>Dolomedes fimbriatus</td>
</tr>
<tr>
<td>Water striders</td>
<td>Gerris and Velia species</td>
</tr>
<tr>
<td>Oak eggar moth</td>
<td>Lasiocampa quercus</td>
</tr>
<tr>
<td>Four-spotted chaser dragonfly</td>
<td>Libellula quadrimaculata</td>
</tr>
<tr>
<td>Fox moth</td>
<td>Macrothylacia rubi</td>
</tr>
<tr>
<td>Ant</td>
<td>Myrmica ruginodis</td>
</tr>
<tr>
<td>Emperor moth</td>
<td>Saturnia pavonia</td>
</tr>
<tr>
<td>Great green bog grasshopper</td>
<td>Stethophyma grossa</td>
</tr>
<tr>
<td>Other species groups that are well represented on raised bogs include:</td>
<td>Araneae (spiders and mites)</td>
</tr>
<tr>
<td></td>
<td>Ceratopogonidae (biting-midges)</td>
</tr>
<tr>
<td></td>
<td>Chironomids (non-biting midges)</td>
</tr>
<tr>
<td></td>
<td>Coleoptera (beetles)</td>
</tr>
<tr>
<td></td>
<td>Collembola (springtails)</td>
</tr>
<tr>
<td></td>
<td>Diptera (true flies)</td>
</tr>
<tr>
<td></td>
<td>Dytiscidae (water beetles)</td>
</tr>
<tr>
<td></td>
<td>Hemiptera (true bugs)</td>
</tr>
<tr>
<td></td>
<td>Hymenoptera (bees, wasps, ants and sawflies)</td>
</tr>
<tr>
<td></td>
<td>Lepidoptera (butterflies and moths)</td>
</tr>
<tr>
<td></td>
<td>Odonta (dragonflies and damselflies)</td>
</tr>
<tr>
<td></td>
<td>Orthoptera (grasshoppers)</td>
</tr>
<tr>
<td></td>
<td>Syrphidae (hoverflies)</td>
</tr>
<tr>
<td></td>
<td>Tipulidae (craneflies)</td>
</tr>
<tr>
<td></td>
<td>Tabanidae (horseflies)</td>
</tr>
</tbody>
</table>
1.2 Habitats Directive Raised Bog Habitats in Ireland

Four habitat types listed on Annex I of the EU Habitats Directive are typically associated with raised bogs in Ireland, two of which are priority habitats (*):

- 7110 Active raised bogs (ARB)*
- 7120 Degraded raised bogs still capable of natural regeneration (DRB)
- 7150 Depressions on peat substrates of the Rhynchosporion
- 91D0 Bog woodland*

The interpretation manual of EU habitats gives the following description for ‘active raised bogs’: “Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-Sphagnetalia magellanici, Scheuchzerietalia palustris p., Utricularietalia intermedium-minoris p., Caricetalia fuscae p.). The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included.” (CEC 2007).

DRB should be, according to the interpretation manual capable of regeneration to ‘Active Raised Bog’ in 30 years if appropriate measures are put in place (i.e. no major impacting activities are present and any necessary restoration works are implemented).

In Ireland, the identification of ARB is made at ecotope level based on the vegetation classification developed by Kelly (1993) and Kelly & Schouten (2002).

Raised bog vegetation communities are grouped into a series of community complexes and these complexes are then amalgamated into a series of ecotopes characterised by different physical characteristics using the approach outlined by Kelly & Schouten (2002).

The main ecotopes that community complexes are grouped into include:

- Central ecotope
- Sub-central ecotope
- Active flushes and soaks
- Sub-marginal ecotope
- Marginal ecotope
- Inactive flushes
- Face-bank ecotope

Actively accumulating peat conditions occur within the sub-central and central ecotopes, which are the wettest on the bog and an indication of good quality ARB. Active flushes and soaks are also dominated by Sphagnum mosses and typically have wet conditions. These features are associated with ARB and contribute to the overall diversity of the habitat.

The adjacent surrounding marginal, sub-marginal, and face-bank bog areas typically have a supporting function for the central and sub-central communities but are not peat accumulating. These drier ecotopes may or may not correspond to the Annex I habitat DRB, as it depends on whether they are capable of regeneration to ARB. Other drier ecotopes recorded on the high bog that do not correspond to ARB include ‘inactive flushes’ which typically have a low Sphagnum cover.
The Annex I habitat Rhynchosporion depressions (7150) typically occurs along pool edges and on flats underlain by deep, wet and quaking peat. Typical plant species include *Rhynchospora alba*, *Drosera anglica*, *Narthecium ossifragum*, *Sphagnum cuspidatum*, *S. denticulatum*, *S. magellanicum*, *S. papillosum*, *Menyanthes trifoliata*, and *Eriophorum angustifolium*.

The priority Annex I habitat bog woodland is also actively peat-forming and overlaps with the ARB habitat. Such woodlands are usually dominated by *Betula pubescens* with a characteristic ground cover dominated by *Sphagnum* moss species, which often form deep carpets, and other mosses including species of *Polytrichum*. A separate conservation objective has been prepared for bog woodland. Woodland areas are occasionally found on raised bogs that have an absence of the characteristic moss layer and are not regarded as peat forming. Such areas do not correspond to the Annex I habitat.

1.2.1 Restoration of Active Raised Bog in Ireland

As already mentioned in the section 1.1, ARB is currently considered to be in unfavourable bad conservation status in Ireland. In addition, according to its definition, DRB should be capable of regeneration to ARB in a 30-year timescale. Thus, it follows that restoration measures are required in order to halt further losses and increase the area of ARB as well as to improve the condition of existing areas of the Annex I habitat.

Most of the restoration works undertaken so far in Ireland have concentrated on the high bog (e.g. Clara Bog, Mongan Bog, Sharavogue Bog and Raheenmore Bog) to prevent further losses as well as to restore areas to ARB. Nevertheless, some restoration works have also been undertaken on cutover areas such as at Ballykenny and Fisherstown Bogs and Killyconny Bog. Such work aims to do one or more of the following (depending on the bog in question): restore ARB on the high bog; reduce further ARB and DRB loss on the high bog; restore peat forming habitats (such as ARB, bog woodland, poor fen) on the cutover.

Works undertaken by the NPWS have indicated that there are significant differences, both ecological and economic, when comparing the effectiveness of works carried out on the cutover with those carried out on the high bog. Positive and significant results (i.e. expansion or development of ARB) can be achieved over a relatively short timeframe (10 years) on favourable areas of the high bog by blocking high bog drains. In contrast, a longer time period (30 years+) is required to achieve active peat formation on cutover areas, and even then the results are generally confined to smaller areas; i.e. flat areas (<0.3% surface slope) or enclosed depressions that have sufficient water flow (minimum catchment 0.5ha) to maintain wet conditions throughout the year. A longer time period (minimum 50-100 years) is likely to be required for high quality ARB habitat (vegetation structure and species diversity) to develop on such cutover areas. In addition, costs of restoration measures on cutover areas are typically significantly higher than those on high bog areas.

1.3 Carrowbehy/Caher Bog SAC

The SAC includes the raised bog, known as Carrowbehy/Caher Bog and an esker ridge that adjoins the northern boundary of the bog running in an east-west direction.

The SAC has been selected for three Annex I habitats. They are:

- [7110] Active raised bogs*
- [7120] Degraded raised bogs still capable of natural regeneration
- [7150] Depressions on peat substrates of the *Rhynchosporion*

Carrowbehy/Caher Bog is a large floodplain bog developed between low drumlin hills in the headwaters of the River Suck, close to Lough O’Flynn and 8km north-east of Ballyhaunis, Co.
Roscommon. Unusually, the bog has partly enveloped a drumlin to the north. The site is a good example of a western raised bog.

The bog is composed of four main lobes:

Main Lobe (Described as Lobe 1 by Fernandez et al. (2014b))
This is a linear tract of bog running in a NNW-SSE direction. It is bounded to the west and north by streams, to the east by a number of hills and to the south by cutover bog. The eastern part of this lobe extends up over the side of one of the marginal hills. The main lobe is approximately 130ha in area.

North-western Lobe (Described as Lobe 2 by Fernandez et al. (2014b))
This lies to the north-west of the main lobe. The area is bounded by a stream on its northern and eastern sides, a hill to the south and by cutover to the west. It is approximately 35ha in area.

Northern Lobe (Described as Lobe 3 by Fernandez et al. (2014b))
This lies to the north of the main lobe and is a remnant of a larger expanse of bog, part of which is now afforested. It is included here because of the poor fen which is developed on its south-east corner. It is isolated from the other lobes by a large stream. This part of the bog has an area of approximately 25ha.

Western Lobe
This is the smallest of the lobes (approximately 20ha). It has been isolated from the main lobe by a series of large drains which form its eastern margin. The area is bounded by hills to the south and west and by a large stream to the north.

The bog is the most species-rich of the region with a long list of bog moss (*Sphagnum*) species occurring in a variety of situations. The main section of bog is intact and features a number of small in-filling lakes, flushes, and a series of swallow holes. Extensive quaking areas occur throughout the main section and large inter-connecting, steep-sided pools and good, active hummocks also occur. The bog surface is wet throughout, even towards the margin.

To the west of the main section, and separated by a small stream a smaller circular dome exists. To the north, an area of old cutover adjoins a drumlin and a well-developed bog moss community which resembles the original base-rich 'lagg' zone with a gradual transition to bog is found.

Peat cutting is no longer taking place on the site and had ceased by 2003 (Fernandez et al. 2014a, b). Old face banks occur around much of the high bog.

Burning was reported as an impacting activity by Kelly et al. (1993), and again by Fernandez et al. (2005). However there was no evidence of recent burning of the site during the period 2005-2012 (Fernandez et al. 2014a, b).
1.3.1 Flora of Carrowbehy/Caher Bog

This is a transitional or western raised bog, with many affinities to blanket bog. Thus it differs from the midland raised bogs by the almost complete absence of *Sphagnum magellanicum*, the more linear pool structure and the abundance of *Racomitrium lanuginosum*, *Pleurozia purpurea* and *Pedicularis sylvatica* in the inter-pool areas and *Sphagnum denticulatum* in the pools. In addition, *Andromeda polifolia* (Midland raised bog indicator) is scarce.

The uncut high bog at this site is remarkably intact and contains a central, active area. Here, good examples of hummocks occur and there are extensive quaking areas and large inter-connecting, steep-sided pools. It is within this wet area that Rhynchosporion vegetation is best represented. The associated flora is characteristically species-poor with typical plant species including the bog mosses *Sphagnum cuspidatum* and *S. denticulatum*, *Menyanthes trifoliata*, occasional *Carex limosa*, *Rhynchospora alba*, *Eriophorum angustifolium* and *Utricularia minor*. The relatively rare *Rhynchospora fusca* has been noted from wet pools within the site. The active area features two small in-filling lakes with several bog mosses species, including *Sphagnum denticulatum*, *S. fallax*, and *S. angustifolium*, as well as *Juncus effusus* and *Eleocharis multicaulis*, amongst others. The presence of *Eleocharis multicaulis*, a species typically found in pools within blanket bog areas, emphasises the westerly nature of the site. The very scarce leafy liverwort, *Cephaloziella elachista*, was recorded here in 1985.

To the west of the main section, and separated by a small stream, a smaller circular dome exists. This area of bog appears to have been little burned and a well-developed lichen flora has developed. The hummocks contain the uncommon lichen *Cladonia rangiferina* and bushy *Calluna vulgaris* which has many epiphytic lichens, such as *Ramalina farinacea*, *Physcia tenella* and *Parmelia perlata*. Well-developed pools also occur here.

The degraded areas of bog are largely confined to the more marginal areas of high bog where plant species such as *Calluna vulgaris, Narthecium ossifragum, Eriophorum vaginatum, Trichophorum germanicum, Erica tetralix* and *Carex panicea* are typically dominant. Indicator species of western raised bog such as *Racomitrium lanuginosum*, *Pleurozia purpurea*, and *Pedicularis sylvatica* are frequent in both areas of active and inactive bog.

To the north, an area of old cutover adjoins a drumlin and a well-developed bog moss community which resembles the original base-rich ‘lagg’ zone, with a gradual transition to bog is found. The bog moss species *Sphagnum teres*, considered to be rare in lowland fens, has been recorded from here.

1.3.2 Fauna of Carrowbehy/Caher Bog

The common frog (*Rana temporaria*) is known to occur on Carrowbehy/Caher Bog.

The only mammal recorded from the high bog is Irish hare (*Lepus timidus hibernicus*). Mammal species that have been recorded from marginal areas surrounding the bog include badger (*Meles meles*).

Carrowbehy Bog is a locally important site for birds. It has been reported as being used regularly by red grouse (*Lagopus lagopus*), snipe (*Gallinago gallinago*), curlew (*Numenius arquata*), and mallard (*Anas platyrhynchos*). Other birds which occasionally occur at the site include hen harrier (*Circus cyaneus*), merlin (*Falco columbarius*), and Greenland white-fronted goose (*Anser albifrons flavirostris*) (NPWS 1997).

The spider fauna of Carrowbehy Bog has been reported by Nolan (2013).
2 Conservation objectives

A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status of those habitats and species at a national level.

Conservation objectives for habitats are defined using attributes and targets that are based on parameters as set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions. Attributes and targets may change or become more refined as further information becomes available.

National Conservation Objectives for raised bog SACs have recently been published in the Draft National Raised Bog SAC Management Plan (DAHG 2014). The various attributes and the justification of appropriate targets used to define favourable conservation condition for ARB relevant to Carrowbehy/Cahir Bog SAC are discussed in the following sections.

2.1 Area

NPWS has commissioned a number of raised bog surveys between 1993 and the present - Kelly et al. (1995); Derwin & MacGowan (2000); Fernandez et al. (2005); Fernandez et al. (2006); Fernandez et al. (2014). Mapping from these surveys has been used to derive the area of ARB for each bog as shown in Table 3. More recent surveys have been able to employ more precise and detailed mapping techniques and more standardised ecotope descriptions. NPWS undertook a review of data from earlier surveys in 2014 taking into account these improved techniques with the aim of providing more accurate figures for ARB. This in some cases has resulted in a change in ARB area for these earlier time periods (NPWS, unpublished data).

The national SAC target for the attribute ‘habitat area’ has been set at 2,590ha (DAHG 2014). This target is based on the estimated area of ARB (1,940ha) and DRB (650ha) present within the SAC network in 1994 (when the Habitats Directive came into effect).

The area of ARB at Carrowbehy/Cahir Bog in 1994 is estimated to have been 67.9ha, while the area of DRB is estimated to have been 19.7ha at that time (see Table 3). Using the same approach that has been adopted in setting the national SAC target, the site-specific target for Carrowbehy/Cahir Bog would equate to 87.6ha (sum of ARB and DRB in 1994). However, in setting the site-specific target the current hydro-ecological conditions on the bog (including cutover) have been considered in order to ensure that the target being set is based on a realistic appraisal of what is achievable as set out below.

The most recent monitoring survey of the bog estimated the area of ARB to be 69.9ha (Fernandez et al. 2014a, b). This represents an increase of 2ha (2.8%) during the period 1994 - 2011.

The current extent of DRB as estimated using a recently developed hydrological modelling technique, based largely on Light Detection and Ranging (LiDAR) data is 35.6ha (see DAHG 2014 for further details of the technique). This represents the area of the high bog, which does not currently contain ARB but has topographical conditions deemed suitable to support ARB (see Map 1 which shows the total area of current and modelled potential ARB). This area was further refined to 17.8ha by estimating the area that could be restored by blocking drains on the high bog. This refinement was based on applying an efficacy factor (see DAHG

2 LiDAR is a remote sensing technology that measures vertical surface elevation by illuminating a target with a laser and analysing the reflected light. This provides much more detailed topographical maps than can be collected by traditional surveying techniques.
Based on the current assessment of the bog, it is therefore concluded that the maximum achievable target for ARB on the high bog is 87.7ha, which is 0.1ha more than the estimated area at time of designation. However, it is important to note that this assumes no further decline of ARB due to impacting activities. Similarly, should the bog be significantly dependent on regional groundwater levels then any deepening of drains in the cutover could further impact the potential restoration of ARB on the high bog.

Table 3 Area of ARB and DRB recorded on the high bog at Carrowbehy/Caher Bog in 1994, 2005, and 2012 (Source: Fernandez et al. 2014a, b).

<table>
<thead>
<tr>
<th></th>
<th>ARB (ha)</th>
<th>DRB (ha)</th>
<th>ARB (ha)</th>
<th>DRB (ha)</th>
<th>ARB (ha)</th>
<th>DRB (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>67.9</td>
<td>19.7</td>
<td>72.9</td>
<td>Unknown</td>
<td>69.9</td>
<td>17.8</td>
</tr>
</tbody>
</table>

A recent eco-hydrological assessment of the cutover surrounding the high bog undertaken as part of the restoration planning process estimates that, by implementing appropriate management, an additional 4.6ha of ARB could be restored in this area. The long term achievable target for ARB on Carrowbehy/Caher Bog is therefore set at 92.3ha which is 4.7ha more than the estimated area of ARB and DRB in 1994.

In conclusion, the site-specific target for the attribute habitat area is: **Restore area of active raised bog to 92.3ha, subject to natural processes.**

2.2 Range

At a national scale, range represents the geographic range that encompasses all significant ecological variations of the ARB habitat. The national SAC target for the attribute ‘range’ has been set as ‘not less than current range subject to natural processes’.

However, range, in the form of habitat distribution, may also be important at the site level, particularly within larger SACs, including those containing a number of individual bogs (i.e. complexes). The attribute therefore under the parameter of range is ‘Habitat distribution’. At the local level, it is important to conserve the variability and distribution of ARB across a raised bog SAC. This will help to ensure the diversity of the habitat is maintained while lessening the impact of localised damaging activities such as fire.

The conservation of ARB within Carrowbehy/Caher Bog as set out in Section 2 above will contribute to safeguarding the national range of the habitat.

The ARB habitat at Carrowbehy/Caher includes central and sub-central ecotope, as well as active flush. A map showing the most recent distribution of ecotopes throughout Carrowbehy/Caher Bog is presented in Map 2.

Carrowbehy/Caher Bog can be divided into four distinct hydrological units. ARB has been recorded on all four of the bog sections in the most recent survey (Fernandez et al. 2014a, b). The best examples of ARB are reported from the three larger southern bog sections. Restoration works took place at the site prior to 2005, including the blocking of several high bog drains. In 2010, NPWS felled to waste a conifer plantation on the high bog. These measures are having a positive effect on the distribution of ARB on Carrowbehy/Caher (Fernandez et al. 2014a, b).

The site-specific target for the attribute habitat distribution is: **Restore the distribution and variability of active raised bog across the SAC.**
2.3 Structure and functions

Structure and functions relates to the physical components of a habitat (“structure”) and the ecological processes that drive it (“functions”). For ARB these include attributes such as the hydrological regime, water quality, habitat quality, species occurrence, elements of local distinctiveness, marginal habitats, negative physical indicators, and negative species occurrence. As several of these attributes are inter-connected, they are all included in order to better define habitat quality in a meaningful way. In some cases, attribute targets are not quantified; however, as more detailed information becomes available (for example through further research), more measurable site-specific targets may be developed. Structure and functions attributes are expanded on in the sections below.

2.3.1 High bog area

On individual raised bogs adequate high bog is required to support the development and maintenance of ARB. Raised bog habitat that is classified as neither ARB nor DRB capable of regeneration is still important particularly as a supporting habitat for those listed in Annex I of the Habitats Directive. It is an essential part of the hydrological unit which supports the ARB and DRB habitats. High bog is of value in its own right as a refuge for species characteristic of drier bog conditions as well as for providing a transitional zone between the Annex I habitats of the high bog and surrounding areas. Additional values for the maintenance of high bog include the preservation of its record of past environmental conditions and carbon storage. The area of high bog in the entire SAC network in 1994 was 10,740ha. The corresponding area in 2012 is 10,515ha – indicating that there has been a 225ha loss of high bog since 1994.

The national target for the attribute ‘high bog’ habitat is to ensure no decline in extent of high bog to support the development and maintenance of ARB.

The area of high bog within Carrowbehy/Caher Bog SAC in 1994 was mapped as 204.6ha, and the corresponding area in 2012 is also 204.6ha (based on interpretation of LiDAR and aerial photography flown in 2012), indicating there was no loss of high bog in this period (DAHG 2014). The extent of high bog within the SAC in 2012 is illustrated on Map 1.

The site-specific target for the attribute high bog is: No decline in extent of high bog necessary to support the development and maintenance of active raised bog.

2.3.2 Hydrological regime: water levels

Hydrological processes are key drivers of raised bog ecology. The different raised bog communities, assemblages and species are affected by various hydrological attributes. For ARB, mean water levels need to be near or above the surface of bog lawns for most of the year. Seasonal fluctuations should not exceed 20cm, and water level should be within 10cm of the surface, except for very short periods of time (Kelly & Schouten 2002). Gentle slopes that limit intermittent lateral losses of water (through surface runoff) and encourage sustained waterlogging are the most favourable to achieve these conditions. These conditions may be maintained on steeper slopes in areas of focused flow (flushes).

The traditional view of water flowing across the bog laterally has been recently refined to also consider that water flows vertically through peat into the underlying substrate. Water loss, by this route, depends on the permeability of the material through which the water must flow and the difference in head (water level elevation) in the bog and underlying mineral substrate; larger differences encountered in higher permeability materials will result in greater losses. Although the proportion of water lost in this manner may be small, the sustained loss during prolonged dry periods may be sufficient to impact bog ecotopes.
Drains extending into the mineral substrate in marginal areas surrounding the bog can lead to an increased gradient between the head in the peat and the head in the underlying substrate resulting in increased vertical water losses from the bog.

The most recent description of drainage at Carrowbehy/Caher Bog is presented in Fernandez et al. (2014a, b) who reported that there are a total 3.9km of unblocked drains on Carrowbehy/Caher Bog, most of which are reported as reduced functional (2.5km) or functional (1.2km). In addition 0.2km of unblocked drains are considered to be non-functional, although these may continue to impact on high bog habitats if they are not completely blocked. Drain blocking activities have taken place on some parts of Carrowbehy/Caher Bog and a total of 3.7km of blocked drains are considered reduced functional, while a further 0.8km of drains are considered non-functional. In addition, there are drains on cutover areas associated with peat cutting, that has now ceased, as well as on adjoining agricultural land. Maintenance including deepening of agricultural drains has taken place around sections of the high bog during the latest reporting period (2005 – 2011). There are also drains associated with conifer plantations that may have impacted upon water levels on the high bog. A tributary of the River Suck flows along the boundary of the main lobe and between main lobe and the two lobes to the north-west. This is likely to have been deepened in the past and is therefore causing at least localised lowered water levels within the peat.

Much of the knowledge regarding the hydrological requirements of raised bog communities in Ireland stems from the extensive ecological and hydrological work undertaken on Clara Bog since the early 1990s. Available hydrological studies for Carrowbehy/Caher Bog include the work carried out by Kelly et al. (1995) as well as a survey of marginal drainage and hydrochemistry by RPS in 2013. Kelly et al. (1995) indicated that most of the inorganic subsoils in the area surrounding the bog are relatively free draining and, as a result, most of the effective rainfall on the inorganic subsoils is suspected to reach the water table. However, a hard, low permeability iron pan was noted in many exposures in the cutover drains. This may form an effective barrier to water flowing to depth from the peat and inorganic subsoil, thus enabling the bog to develop. Iron pans were not noted in all locations and therefore more localised focused infiltration may occur in these areas. The hydrochemistry survey carried out as part of the Kelly et al. (1995) study noted that, within the main river channel, sustained increases in Specific Electrical Conductivity (SEC) occurred at a number of discrete points. They proposed that this occurred as a result of the channel penetrating below the base of the peat at these locations, permitting significant groundwater discharge. Most of the marginal drains were considered to have only minor contribution from regional groundwater with typical SECs of <100µs/cm, although some instances of higher SECs were noted indicating some discrete locations where drains received discharge from the inorganic substrate.

Kelly et al. (1995) also identified several pipes/swallow holes on the high bog, and that many of these occurred within elongated funnel-shaped enclosed hollows that now act as zones of focused flow within the peat. This reflects the highly permeable properties of the substrate as the bedrock underlying Carrowbehy/Caher Bog is Visean limestone (Lower Carboniferous), which is subject to conduit karstification. The dominant subsoil type in the area surrounding the bog is sandstone till (Devonian) and as noted by Kelly et al. (1995) this is relatively free draining.

The drain and hydrochemistry survey carried out by RPS in 2013 noted relatively shallow groundwater levels and waterlogged conditions in the inorganic deposits around much of the bog. However, on the eastern margin, a flowing drain was observed to discharge directly to a swallow hole, reflecting the highly permeable properties of the substrate and the presence of karst features in the bedrock. SEC levels in the drains varied widely around the
edges of the bog, with north-western and south-eastern zones being dominated by lower SEC waters. Significantly higher SEC waters occur along the northern boundary of the bog, where an area of lagg zone and more minerotrophic fen occurs. This survey also noted that the main channel (River Suck) was recently maintained and possibly deepened, as reflected by the regular geometry of the river cross section along some intervals of its course.

The site-specific target for the attribute hydrological regime – water levels is: **Restore appropriate water levels throughout the site.**

2.3.3 Hydrological regime: flow patterns

As outlined above, ARB depends on water levels being near or above the surface of bog lawns for most of the year. Long and gentle slopes are the most favourable to achieve these conditions. Changes to flow directions due to subsidence of bogs can radically change water regimes and cause drying out of high quality ARB areas and soak systems.

A map illustrating the slopes and drainage patterns on Carrowbehy/Caher Bog based on a digital elevation model generated from LiDAR imagery flown in 2012 is presented in Map 3.

This map illustrates that the flow patterns across Carrowbehy/Caher Bog vary significantly between each of the different lobes of bog. Flow patterns on the main lobe suggest that some sections may have been affected by subsidence as there are areas of focused flow, particularly towards the western margin. Deviations from typical raised bog watch-glass topography suggests that the bog has been affected by subsidence, most likely as a result of drainage or maintenance of the river channel. However, since Carrowbehy/Caher Bog is located towards the west of the range, the bog demonstrates some characteristics more typical of blanket bog, therefore some deviations would be expected. Flow patterns on the northern lobe appear to have been affected by high bog drainage, with most flow draining through the centre of the bog along the alignment of a drain. Flow patterns on the western lobe are radial from the centre of the bog towards the margins and are thus more consistent with a typical raised bog; however, steep slopes, particularly along the northern and eastern bog margins suggest there may have been subsidence in this area, possibly as a result of marginal drainage.

The site-specific target for the attribute hydrological regime – flow patterns is: **Restore, where possible, appropriate high bog topography, flow directions and slopes.**

2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas)

Transitional zones between raised bogs and surrounding mineral soils are typically cutover bog and drained lagg zones. The maintenance / restoration of these areas will help to maintain hydrological integrity of ARB and DRB and support a diversity of other wetland habitats (e.g. wet woodland, swamp and fen) as well as species that they sustain. In some cases, these areas may assist in reducing further losses of ARB / DRB on the high bog and in time could develop into active peat forming habitats (including ARB - see Section 2.1 above). These transitional zones, once restored, can provide ecosystem services through flood attenuation and water purification to downstream areas and potentially increase the carbon storage / sink function of the bog. The estimated extent of such transitional areas within the SAC network is 3,000ha (DAHG 2014). The national target for these transitional areas is to maintain / restore semi-natural habitats with high water levels around as much of the bog margins as necessary.

The transitional areas at Carrowbehy/Caher Bog include a range of different habitat types (e.g. heath, fen, lowland grassland, improved grassland, scrub, mixed woodland and
streams). The total area of cutover bog is estimated to be circa 92ha. The developments of habitats within cutover areas depend on a number of factors including prevailing land-use, topography, upwelling regional groundwater and drainage.

The most intact margins of the bog include a narrow transitional zone between the bog and an esker to the north as well as a poor fen in a slight depression beside a major drainage channel at the north-eastern end. An area of heathland is confined to the south-western slopes of a drumlin near the eastern boundary of the site. The bog is incised by an extensive network of drains and some naturally occurring streams, including the headwaters of the River Suck.

The site-specific target for the attribute transitional areas is: **Restore adequate transitional areas to support / protect active raised bog and the services it provides.**

2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland

A diverse good quality microtopography on raised bogs consists of *Sphagnum* dominated pools, hollows, lawns and hummocks, which support the highest diversity of species including hummock indicators: *Sphagnum fuscum* and *S. austinii*; pool indicators: *S. cuspidatum*, *S. denticulatum*, and indicators of lack of burning events e.g. some lichen species (*Cladonia* spp.) (Cross 1990).

The national target for the attribute vegetation quality has been set as “to maintain / restore sufficient high quality bog vegetation (i.e. central ecotope and / or flushes / soaks). At least 50% of ARB habitat should be central ecotope and / or flush / soaks.” Bog woodland is also regarded as a desirable variant of ARB as it adds species and structural diversity to the habitat and therefore, where relevant, also contributes to the 50% target at a site level.

A summary description of the vegetation of Carrowbehy/Caher Bog is presented in Section 1.3.1 above. The vegetation and habitats of the bog have been described in more detail by Kelly (1995), Fernandez et al. (2005), and Fernandez et al. (2014a, b). The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4 and on Map 2. It can be seen that the proportion of ARB that comprises central and active flush is currently 82.5%. Comparing this to results of surveys undertaken in 2004 indicates that although the total area of ARB declined across the site, the proportion of each of the component ecotopes remained relatively static.

The target for this attribute is to maintain a minimum of 57.7ha of central ecotope and active flush that is currently present. This exceeds 50% of the total ARB present within the site and also exceeds 50% of the long term target set for ARB (92.3ha).

<table>
<thead>
<tr>
<th>Ecotope</th>
<th>2005</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>% of total ARB</td>
</tr>
<tr>
<td>Sub-central ecotope</td>
<td>12.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Central ecotope</td>
<td>58.3</td>
<td>73.4</td>
</tr>
<tr>
<td>Soaks / active flush</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Total ARB</td>
<td>72.9</td>
<td>69.9</td>
</tr>
</tbody>
</table>

The site-specific target for the attribute vegetation quality is: **Maintain at least 57.7ha of central ecotope/active flush/soaks/bog woodland as appropriate.**
2.3.6 Vegetation quality: microtopographical features

The characteristic microtopographical features of raised bogs are described in Section 1.1.1 above.

Hummock and hollow microtopography is well developed on Carrowbehy/Caher where inter-connecting linear pools occur (Kelly 1993; Fernandez et al. 2005; Fernandez et al. 2014a, b).

The site-specific target for the attribute microtopographical features is: **Maintain and restore adequate cover of high quality microtopographical features.**

2.3.7 Vegetation quality: bog moss (Sphagnum) species percentage cover

Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical microtopographical features as described in Section 2.3.6 above.

The vegetation of a typical raised bog that is still hydrologically intact is characterised by the dominance of several species of Sphagna and dwarf ericoid shrubs. The most abundant species are *Sphagnum capillifolium*, *S. austinii* and *S. papillosum* which form hummocks or low ridges. *Sphagnum fuscum* may also form hummocks (Cross 1990). On the flats *Sphagnum magellanicum*, *S. papillosum*, *S. tenellum*, and *S. subnitens* are the key species. *Sphagnum pulchrum* may also be dominant in flats on western raised bogs. In permanently waterlogged hollows *Sphagnum cuspidatum* and *S. denticulatum* (western bogs) occur. *Sphagnum fallax* is common where there is slight flushing (Cross 1990). The most commonly occurring *Sphagnum* moss species that occur on raised bogs in Ireland are presented in Table 5 along with a summary of their ecology and typical contribution to peat formation.

Kelly et al. (1995) and Fernandez et al. (2005, 2014a, b) provide information on the occurrence of *Sphagnum* species throughout Carrowbehy/Caher Bog.

Table 5 *Sphagnum* species typically associated with raised bog ecosystems in Ireland. Ecology as described by Laine et al. (2009) with minor modifications.

<table>
<thead>
<tr>
<th>Species</th>
<th>Ecology</th>
<th>Peat forming capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnum austinii</td>
<td>Hummock species</td>
<td>High</td>
</tr>
<tr>
<td>Sphagnum capillifolium</td>
<td>Forms small hummocks and carpets</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum cuspidatum</td>
<td>Pool and hollow species</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum denticulatum</td>
<td>Pool and hollow species</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum fallax</td>
<td>Occurs in lawns and carpets, shade tolerant. Indicative of some nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum fuscum</td>
<td>Forms dense low and wide, and occasionally high hummocks</td>
<td>High</td>
</tr>
<tr>
<td>Sphagnum magellanicum</td>
<td>Lawn species forming carpets and low hummocks</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum palustre</td>
<td>Forms hummocks and dense carpets, often in shaded conditions. Indicative of nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum papillosum</td>
<td>Lawn, hollow, and low hummock species</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum pulchrum</td>
<td>Grows in lawns and hollows, more typical of western bogs</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum squarrosum</td>
<td>Forms carpets and small mounds. Indicative of nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum subnitens</td>
<td>Occurs as individual shoots or small cushions and</td>
<td>Moderate</td>
</tr>
<tr>
<td>Species</td>
<td>Ecology</td>
<td>Peat forming capacity</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Sphagnum tenellum</td>
<td>Occurs as single shoots or weak cushions, typically in disturbed patches of the bog surface</td>
<td>Low</td>
</tr>
</tbody>
</table>

The site-specific target for the attribute bog moss (*Sphagnum*) species is: **Restore adequate cover of bog moss (*Sphagnum*) species to ensure peat-forming capacity.**

2.3.8 Typical ARB species: flora

Carrowbehy/Caher Bog supports the full complement of plant species typically associated with a western raised bog (see Table 1 and Section 1.1.1 above).

The key typical species that are indicative of high quality raised bog include *Sphagnum fuscum* and *S. austini*, which are associated with hummocks and *S. cuspidatum* and *S. denticulatum* which are associated with pools and hollows. All of these species have been reported from Carrowbehy/Caher Bog (Fernandez *et al.* 2005, 2006, 2014a, b).

Fernandez *et al.* (2006, 2014a, b) report that the vegetation of this site is characterised by interconnecting linear pools (tear pools) which are mainly algal or bare with some containing *Sphagnum cuspidatum*, *S. denticulatum*, and *Menyanthes trifoliata* and occasionally *Carex limosa*. The inter-pool areas tend to have a low to moderate *Sphagnum* cover (34 to 75%) and are dominated by *Calluna vulgaris*, *Erica tetralix*, *Eriophorum vaginatum*, *Carex panicea* and *Narthecium ossifragum* with a high occurrence of *Pleurozia purpurea* and *Pedicularis sylvatica*. Occasional hummocks of *Sphagnum imbricatum* and *S. fuscum* are seen but the main hummock forming bryophytes which occur are *S. capillifolium* and *Racomitrium lanuginosum*.

The site-specific target for the attribute typical bog flora is: ** Restore, where appropriate, typical active raised bog flora.**

2.3.9 Typical ARB species: fauna

As mentioned in section 1.1.3, a list of typical fauna specific to ARB has not been developed and the table contains species that use the wider raised bog habitat. This may be refined as more information becomes available.

Site specific information on the faunal assemblages associated with Carrowbehy/Caher Bog is currently limited. It is likely that most species groups referred to in section 1.1.3 occur on the bog.

The site-specific target for the attribute typical bog fauna is: **Restore, where appropriate, typical active raised bog fauna.**

2.3.10 Elements of local distinctiveness

A range of features may be associated with raised bogs which add to the scientific, historical, or conservation value of a bog. These can include geological, topographical, archaeological and hydrological features (e.g. soaks, lakes, flushes) and noteworthy species of flora and fauna (Cross 1990). Notable species of flora and fauna include those listed in the Habitats and Birds Directives, Red-listed species and other rare or localised species. For this attribute, features that are particularly associated with ARB are relevant.
2.3.10.1 Site features

Infilling lakes, swallow holes, and a number of soaks and active flushes are the main features of local distinctiveness on Carrowbehy/Caher Bog. These features have been described in detail by Kelly et al. (1995) and Fernandez et al. (2005, 2014). In places, the vegetation indicates mineral enrichment. A hydrochemistry survey undertaken as part of the 1995 study did not reveal any contribution of regional groundwater within these features. The enrichment is likely to be due to the effects of local focused flow from the surrounding bog.

These features increase diversity at the site by supporting a species assemblage not typically associated with raised bog. Such lakes and flushes were once a more common feature of Ireland’s larger raised bogs but are now restricted to only a small number of sites.

2.3.10.2 Rare flora

The bog moss species *Sphagnum teres*, considered to be rare in lowland fens, has been recorded from cutover bog in the north of the site.

Other notable plant species recorded from the bog include *Rhynchospora fusca*, the liverwort *Cephaloziella elachista* and the lichen *Cladonia rangiferina*.

2.3.10.3 Rare fauna

As mentioned above, there is limited current documented site-specific data relating to species that are particularly associated with ARB, including rare species..

In conclusion, the site-specific target for the attribute elements of local distinctiveness is: Maintain features of local distinctiveness, subject to natural processes.

2.3.11 Negative physical indicators

Raised bogs that have been damaged by marginal cutting and drainage, reclamation for agriculture, forestry activities, fire, surface drainage, or the lowering of regional water tables show a range of negative physical indicators (Cross 1990). Such negative physical features of ARB include: bare peat, algae dominated pools and hollows, marginal cracks, tear patterns, subsidence features such as dry peat and / or mineral mounds / ridges emerging or expanding, and burning evidence.

No peat cutting has occurred at Carrowbehy/Caher since 2003 (Fernandez et al. 2014a, b). However, the bog continues to be significantly affected by drainage on the high bog and associated with past cutting around the edges (see Section 2.3.2 above).

No recent fire events have damaged the high bog (Fernandez et al. 2014). Light grazing and poaching by cattle was noted in inactive flushes in the northern lobe (Lobe 3). This is considered to have a low impact on the bog. Other negative physical features such as bare peat, algal pools and hollows have been noted on the periphery of the high bog (Fernandez et al. 2014a, b).

The site-specific target for the attribute negative physical indicators is: Negative physical features absent or insignificant.

2.3.12 Vegetation composition: native negative indicator species

Indicators of disturbance on a raised bog include species indicative of drying out conditions such as abundant *Narthecium ossifragum* and *Trichophorum germanicum*; *Eriophorum vaginatum* forming tussocks; abundant *Sphagnum magellanicum* in pools previously dominated by species typical of very wet conditions (e.g. *Sphagnum cuspidatum*). Indicators
of frequent burning events include abundant *Cladonia floerkeana* and high cover of *Carex panicea* (particularly in the true midlands raised bog type).

The site-specific target for the attribute negative indicator species is: **Native negative indicator species at insignificant levels.**

2.3.13 Vegetation composition: non-native invasive species

Non-native invasive species that can commonly occur on raised bog habitats include: *Pinus contorta*, *Rhododendron ponticum*, and *Sarracenia purpurea* (Cross 1990).

A few individual conifer (*Picea* sp and *Pinus* sp.) saplings have been recorded from the high bog, however there is no evidence that these species are spreading (Fernandez *et al.* 2014). A small conifer plantation that formerly occurred on the high bog has been felled to waste by NPWS in 2010.

The non-native moss *Campylopus introflexus* was noted occasionally on bare peat at drain margins, on peat plugs used to block drains, and in marginal ecotope.

Invasive species are considered to have low importance/impact on high bog habitats (Fernandez *et al.* 2014a, b).

The site-specific target for the attribute non-native invasive species: **Non-native invasive species at insignificant levels and not more than 1% cover.**

2.3.14 Air quality: nitrogen deposition

Peatlands are highly sensitive to air pollution, particularly nitrogen deposition. Reactive nitrogen from fossil fuel combustion or intensive agriculture can contaminate rain and snow, causing soil acidification, nutrient enrichment, and a decline in species that are sensitive to these conditions. There is evidence that the combined impact of elevated nitrogen deposition and a warming climate could exceed the sum of the individual stressors and lead to a dramatic decline in the biodiversity of mosses, sensitive vascular plants, and microbes, potentially leading to catastrophic peat loss (PEATBOG project - http://www.sste.mmu.ac.uk).

Air pollution can change both the species composition and the functioning of peatlands. The primary atmospheric pollutant from the Industrial Revolution to the mid 1970s was sulphur deposition, but levels have since greatly declined. Reactive nitrogen (N) deposition (primarily NO3- and NH4+), which can both acidify and eutrophy, became significantly elevated over a widespread area in the early to mid-20th century and is now the major pollutant in atmospheric deposition across most of Europe (Fowler *et al.* 2005).

Nitrogen is commonly a limiting terrestrial nutrient and in un-impacted peatlands it is tightly cycled. With long-term elevated N deposition, vegetation composition typically shifts toward species adapted to higher nutrient levels, with an overall loss of diversity (Malmer & Wallén 2005). In peatlands, field experiments with N additions within the current European range have shown significant declines in bryophyte species-richness and productivity, and shifts in composition toward vascular plants (Bobbink *et al.* 1998; Bubier *et al.* 2007). Community shifts toward more nitrophilous bryophytes in N-enriched regions such as parts of the Netherlands are also well documented (Greven 1992). In the UK, both a general survey of peatlands across the country (Smart *et al.* 2003), and a targeted study of *Calluna* moorland (Caporn *et al.* 2007) showed significant inverse relationships between levels of nitrogen deposition and species richness, with bryophytes particularly impacted. Changes in the vegetation also impact below-ground communities and biogeochemical processes.
Moderate increases in N deposition from a low level may increase *Sphagnum* and vascular plant productivity without an equal increase in decomposition rates, leading to enhanced carbon accumulation (Turunen, *et al.* 2004). However, shifts in species composition from bryophytes to vascular plants may increase the production of easily-decomposable plant material, leading to higher rates of decomposition, and reduced carbon accumulation (Lamers *et al.* 2000; Bubier *et al.* 2007).

The particular sensitivity of nutrient-poor ombrotrophic peatlands to nitrogen enrichment is reflected in the low critical load threshold of between 5 and 10kg N/ha/yr for these ecosystems (Bobbink & Hettelingh 2011), a level which is exceeded over a significant portion of their range. An Irish study during the late 1990s undertaken by Aherne & Farrell (2000) concluded that total N deposition shows a strong east-west gradient, with lowest deposition in the west at 2kg N/ha/yr and highest in the east and south-east at 20kg N/ha/yr. Average N deposition over the Republic of Ireland was estimated to be approximately 12kg N/ha/yr. The study also concluded that the Critical Load Threshold for N was exceeded in at least 15% of ecosystems studied. The critical load applied to peatland ecosystems by Aherne & Farrell (2000) was 10kg N/ha/yr. This is in line with the recommendation by Bobbink & Hettelingh (2011) that the critical load should be set at the high end of the range in areas of high precipitation and at the low end of the range in areas of low precipitation assuming that Ireland represents a high precipitation area.

It is recommended in the case of Carrowbehy/Caher Bog that the level of N deposition should not exceed the low end of the range i.e. 5kg N/ha/yr. This recommendation is based on a precautionary approach, as the evidential basis for setting a higher level is not particularly strong as alluded to by Payne (2014). Total N deposition at Carrowbehy/Caher Bog as reported by Henry & Aherne (2014) is 9.8 kg N/ha/yr.

The site-specific target for the attribute air quality is: **Air quality surrounding bog close to natural reference conditions. The level of N deposition should not exceed 5kg N/ha/yr.**

2.3.15 Water quality

Ombrotrophic peat waters found on the surface of raised bogs are characterised by low pH values (pH < 4.5) (Moore & Bellamy 1974) and also have low values of electrical conductivity. This is due to the fact that the raised bog system derives its mineral supply from precipitation, which is usually acidic and low in nutrients. Raised bog vegetation exchanges cations with protons to further reduce the pH.

Hydrochemistry varies in the areas surrounding a raised bog. Locally, conditions may be similar to the high bog due to a dominance of water originating from the bog. However, elsewhere in the marginal areas, there may be increased mineral and nutrient content of the water due to regional groundwater influences, runoff from surrounding mineral soils, and the release of nutrients through oxidation of peat resulting from reduced water levels.

Hydrochemistry survey undertaken as part of the Kelly *et al.* (1995) study confirmed the dominance of ombrotrophic waters (indicated by low EC) throughout the bog and in many surrounding marginal drains. Recent surveys undertaken by RPS in 2013 confirm that low EC water continues to prevail within most marginal drains although higher EC water is present within drains along the northern boundary of the bog where fen vegetation occurs.

The site-specific target for the attribute water quality is: **Water quality on the high bog and in transitional areas close to natural reference conditions.**
3 References

Map 1: Extent of potential active raised bog on Carrowbehy/Caher Bog.
Map 2: Distribution of raised bog ecotopes on Carrowbehy/Caher Bog.
Map 3: Digital elevation model and drainage patterns at Carrowbehy/Caher Bog.