Carlingford Mountain SAC (site code 000453)

Conservation objectives supporting document - upland habitats

NPWS

Version 1

December 2021

Contents

1	Int	roduct	tion1
	1.1	Carl	ingford Mountain SAC2
	1.2	NSU	IH mapping methodology2
	1.3	Pote	ential for habitat restoration3
2	Со	nserva	ation objectives
3	Are	ea	
4	Ra	nge	
5	Str	ucture	e and functions5
	5.1	Ecos	system function6
	5.1	L.1	Ecosystem function: soil nutrients
	5.1	L.2	Ecosystem function: peat formation7
	5.1	L.3	Ecosystem function: hydrology7
	5.1	L.4	Ecosystem function: water quality7
	5.2	Con	nmunity diversity7
	5.2	2.1	Community diversity data for 4010 Wet heaths8
	5.2	2.2	Community diversity data for 4030 Dry heaths8
	5.2	2.3	Community diversity data for 4060 Alpine and Boreal heaths8
	5.2	2.4	Community diversity data for 6230 Species-rich Nardus grasslands*9
	5.2	2.5	Community diversity data for 7130 Blanket bogs*9
	5.2	2.6	Community diversity data for 7140 Transition mires9
	5.2	2.7	Community diversity data for 7230 Alkaline fens9
	5.3	Veg	etation composition9
	5.3	3.1	Vegetation composition: positive indicator species9
	5.3	3.2	Vegetation composition: other desirable species10
	5.3	3.3	Vegetation composition: negative indicator species11
	5.3	3.4	Vegetation composition: non-native species12
	5.3	8.5	Vegetation composition: undesirable native species12
	5.4	Veg	etation structure
	5.4	1.1	Browsing and grazing13
	5.4	1.2	Burning14
	5.4	1.3	Sphagnum condition
	5.4	1.4	Vegetation height14
	5.4	1.5	Growth phases of ling14

5.4.6	Senescent ling	15
5.4.7	Forb to graminoid ratio and litter cover	15
5.5 Phy	/sical structure	15
5.5.1	Disturbed bare ground	15
5.5.2	Drainage	15
5.5.3	Erosion	16
5.5.4	Tufa formations	16
5.5.5	Grazing or disturbance	16
5.6 Ind	icators of local distinctiveness	16
6 Referen	ces	17

List of Maps

Map 1	Carlingford Mountain SAC Conservation Objectives – 4010 Wet Heaths
Map 2	Carlingford Mountain SAC Conservation Objectives – 4030 Dry Heaths
Map 3	Carlingford Mountain SAC Conservation Objectives – 4060 Alpine and Boreal Heaths
Map 4	Carlingford Mountain SAC Conservation Objectives – 6230 Species-rich Nardus grasslands*
Map 5	Carlingford Mountain SAC Conservation Objectives – 7130 Blanket Bog (* if active bog)
Map 6	Carlingford Mountain SAC Conservation Objectives – 7140 Transition Mires
Map 7	Carlingford Mountain SAC Conservation Objectives – 7230 Alkaline Fens
Map 8	Carlingford Mountain SAC Conservation Objectives – 8110 Siliceous Screes
Map 9	Carlingford Mountain SAC Conservation Objectives – 8220 Siliceous Rocky Slopes

Please note that this document should be read in conjunction with the following report: NPWS (2021) Conservation Objectives: Carlingford Mountain SAC 000453. Version 1.0. National Parks and Wildlife Service, Department of Housing, Local Government and Heritage, Ireland.

1 Introduction

Achieving Favourable Conservation Status (FCS) is the overall objective to be reached for all Annex I habitat types and Annex II species of European Community interest listed in the EU Habitats Directive 92/43/EEC. It is defined in positive terms, such that a habitat type or species must be prospering and have good prospects of continuing to do so.

Almost 19% of Ireland can be considered to support upland habitats (Perrin *et al.*, 2009). The importance of these areas for biodiversity conservation is unquestionable, with numerous upland habitat types listed under Annex I of the EU Habitats Directive and many rare and threatened bird and other animal species being associated with these habitats. This is reflected in the fact that over 40% of the total terrestrial area currently selected for designation as Special Areas of Conservation (SAC) in Ireland lies above 150m in altitude.

The Scoping Study and Pilot Survey of Upland Habitats (Perrin *et al.*, 2009) was commissioned by the National Parks and Wildlife Service (NPWS) with the primary remit of devising an appropriate strategy and methodologies for conducting a National Survey of Upland Habitats (NSUH). Four phases of the NSUH have subsequently been conducted between 2010 and 2014. The principle aims of the NSUH are to map all habitats within a site and to assess the conservation condition of the relevant Annex I habitats, listed in Table 1.

Carlingford Mountain SAC was surveyed as part of the NSUH between April and mid-May 2009. The results of the survey are reported in Roche *et al.* (2014).

Habitat code	Habitat name
4010	Northern Atlantic wet heaths with Erica tetralix
4030	European dry heaths
4060	Alpine and Boreal heaths
6230	Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and
	submountain areas, in Continental Europe)*
7130	Blanket bogs (* if active bog)
7140	Transition mires and quaking bogs
7150	Depressions on peat substrates of the Rhynchosporion
7230	Alkaline fens
8110	Siliceous screes of the montane to snow levels (Androsacetalia alpinae and
	Galeopsietalia ladani)
8120	Calcareous and calcshist screes of the montane to alpine levels (Thlaspietea rotundifolii
8210	Calcareous rocky slopes with chasmophytic vegetation
8220	Siliceous rocky slopes with chasmophytic vegetation

Table 1: Annex I habitats that occur in Irish uplands and which are primary focus habitats for the NSUH.Habitats in bold are those that are listed as Qualifying Interests for Carlingford Mountain SAC.

* Denotes a priority habitat under the EU Habitats Directive

1.1 Carlingford Mountain SAC

Carlingford Mountain SAC is a relatively small SAC, being *circa* 31km² in extent and is located on the Cooley Peninsula in Co. Louth. It lies between the villages of Carlingford and Omeath to the east and Ravensdale to the west (O.S. Discovery Series map 36). It comprises two main upland areas of dolerite, granite, slate and gabbro that are narrowly linked at the Windy Gap. In the east is Carlingford Mountain proper, with the peaks of Slieve Foye (alt. 588 m), The Eagles Rock (alt. 528 m), The Ravens Rock (alt. 457 m) and The Foxes Rock (alt. 404 m) and Barnavave (alt. 350 m). On Carlingford Mountain, several cascades and a few small mountain lakes are to be found. In the west, the terrain is less steep and rocky. It is dominated by the transmission tower at Clermont Cairn on the top of Black Mountain (alt. 508 m) and extends from The Castle (alt. 383 m) in the south to Anglesey Mountain (alt. 422 m) in the north where the SAC borders Northern Ireland. The Táin Way waymarked walk crosses both Carlingford Mountain and Black Mountain, providing relatively easy access for members of the public.

1.2 NSUH mapping methodology

A detailed habitat mapping survey of Carlingford Mountain SAC utilising the NSUH methodology presented in Perrin *et al.* (2014) has been conducted. A brief description of the methodology used to map habitats by the NSUH is presented here to elucidate how area was calculated for each of the habitats and to explain how the gradated distribution maps were produced. For full details, see Perrin *et al.* (2014).

The local topography of most upland areas consists of intricate patterns of hollows, rocky outcrops, flushes and terraces. The mosaics of vegetation that have developed on this varying topography is often far too complex to map as individual habitats in the manner possible for more uniform landscapes. Hence the approach adopted by the NSUH was to map units (referred to as polygons) that reflect homogeneous mosaics of vegetation and topography. Attempting to map smaller polygons representing single habitats would have greatly increased the amount of time spent mapping and the number of polygons mapped, and would not ultimately have eliminated the need for recording mosaics at smaller scales. All the habitats and non-vegetated substrates present in each polygon and the approximate percentage of the polygon they occupy were recorded. As the total area of each polygon is known from digitisation, data on the approximate extent of each habitat can be readily calculated. A provisional vegetation classification of upland vegetation types was developed to allow more detailed recording of plant communities than would be possible using a habitat classification scheme such as Fossitt (2000).

It is important to note that the NSUH classified and assessed habitats according to the flora and vegetation communities currently present rather than that which may previously have occurred. For example, on an area of drained deep wet blanket peat the current plant communities may be more akin to wet heath than blanket bog as species sensitive to desiccation may have disappeared after drainage. Such an area would therefore have been mapped as wet heath (current vegetation) rather than drained blanket bog. As a result of this approach, the only vegetation classified and mapped as the inactive component of 7130 Blanket bogs (* if active bog) was *Eriophorum angustifolium – Sphagnum fallax* swards on eroded bog where a reasonable depth of peat remains. Where areas of wet heath have developed on drained blanket bog they may retain blanket bog restoration potential and this may need to be assessed as, even though restoration of wet heath is an objective for this SAC,

so is restoration of active blanket bog; however, the latter being a priority Annex I habitat is likely to take precedence (see also 1.3). The Fossitt (2000) habitat PB4 Bare peat was used for recently cutover areas of peat. Where older cutover areas had revegetated to another vegetation community, or supported a non-vegetation cover type, they were recorded under the relevant community.

Note that the NSUH used the most up to date SAC boundary dataset available at the time of survey. For Carlingford Mountain SAC, this was the boundary available in December 2009, which was based on the Ordnance Survey six-inch map base. Any areas calculated and presented here are based on this boundary version.

1.3 Potential for habitat restoration

Restoration management is required for areas of habitat that are Qualifying Interests in this SAC. The feasibility of restoration of degraded areas will need evaluation and ranking in order of importance and taking into consideration a range of factors including habitat priority status under the Habitats Directive.

Areas that may be restored to the priority Annex I habitat active blanket bog could include for example inactive bog; bare eroding bog; and recently cutover bog; but also areas of drained deep peat or older cutovers that may now be dominated by heath vegetation. These latter areas may currently be mapped as other Annex I habitats (e.g. heath habitats 4010, 4030) on the basis of current vegetation composition. Restoration of priority 7130 habitat could therefore result in reduction in area and distribution of such Annex I habitats which may be Qualifying Interests also. If such scenarios are identified during the process of developing restoration management plans, the conservation objectives for these Qualifying Interests should be adjusted as necessary.

2 Conservation objectives

A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status (FCS) of those habitats and species at a national level.

Conservation objectives are defined using attributes and targets based on the parameters set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions.

The Guidelines for a national survey and conservation assessment of upland vegetation and habitats in Ireland (Perrin et al., 2014) have been used as a basis for setting most of the site-specific attributes and targets for uplands habitats. However, attributes and targets may change/become more refined as further information becomes available.

Objectives for habitats have been set with reference to the assessment of those habitats in Roche *et al.* (2014). If area and structure and functions were both assessed as "Favourable" the objective for that habitat is to maintain favourable conservation condition. If either parameter was assessed as "Unfavourable – Inadequate" or "Unfavourable – Bad", the objective for that habitat is to restore favourable conservation condition.

This document provides supporting information for the attributes of the conservation objectives for the upland habitats within Carlingford Mountain SAC, given in the main conservation objectives document for the SAC. The two documents should be read in conjunction with each other.

The conservation objective for each of the Annex I habitats dealt with in this supporting document are as follows:

- To restore the favourable conservation condition of Northern Atlantic wet heaths with *Erica tetralix* in Carlingford Mountain SAC.
- To restore the favourable conservation condition of European dry heaths in Carlingford Mountain SAC.
- To restore the favourable conservation condition of Alpine and Boreal heaths in Carlingford Mountain SAC.
- To restore the favourable conservation condition of Species-rich *Nardus* grasslands, on siliceous substrates in mountain areas (and sub-mountain areas, in Continental Europe)* in Carlingford Mountain SAC.
- To restore the favourable conservation condition of Blanket bogs (* if active bog) in Carlingford Mountain SAC.
- To maintain the favourable conservation condition of Transition mires and quaking bogs in Carlingford Mountain SAC.
- To maintain the favourable conservation condition of Alkaline fens in Carlingford Mountain SAC.
- To maintain the favourable conservation condition of Siliceous screes of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia ladani) in Carlingford Mountain SAC.
- To maintain the favourable conservation condition of Calcareous rocky slopes with chasmophytic vegetation in Carlingford Mountain SAC.
- To restore the favourable conservation condition of Siliceous rocky slopes with chasmophytic vegetation in Carlingford Mountain SAC.

3 Area

Habitat extent is a basic attribute to be assessed when determining the condition of a particular habitat. The target is for the habitat area to be stable or increasing from the baseline which was established by Roche *et al.* (2014). These areas are reproduced in Table 2.

Annex I code	Habitat	Area (ha)	% of SAC
4010	Wet heaths	283.1	9.13
4030	Dry heaths	1,073.3	34.61
4060	Alpine and Boreal heaths	28.8	0.93
6230*	Species-rich Nardus grassland*	13.3	0.43
7130*	Active blanket bogs*	92.6	2.99
7130	Inactive blanket bogs	3.6	0.12
7140	Transition mires	1.6	0.05
7230	Alkaline fens	45.3	1.46
8110	Siliceous screes	14.2	0.46
8210	Calcareous rocky slopes	NA	NA
8220	Siliceous rocky slopes	84.7	2.73

 Table 2: Mapped extent of the upland Annex I habitats that are listed as Qualifying Interests for Carlingford

 Mountain SAC. * denotes priority habitat.

As mentioned earlier, the area of blanket bog habitat comprises active and inactive blanket bogs. The most frequent example of the latter encountered in the NSUH is described in Perrin *et al.* (2014) as a monospecific sward of common cottongrass (*Eriophorum angustifolium*) on eroded bog where a reasonable depth of peat remains. Note, however, that where examples of this community occur on re-deposited, eroded peat, these areas will not have the structural, hydrological or functional characteristics of naturally formed blanket bog, but colonisation by bog cotton plays a valuable early role in stabilising the peat.

Loss of area since 1995 was investigated as part of the NSUH through a comparison of contemporary and past aerial photographs (Roche *et al.*, 2014). Changes in areas that can be detected through this method are limited to obvious habitat changes such as mechanised turf-cutting, agricultural improvement, afforestation, the development of windfarms, roads or tracks, and large-scale discrete erosion events due to bog bursts or land slips. Where obvious anthropogenic losses have been identified, these are included in the area target.

In the case of 7130 Blanket bogs (* if active bog), it was not practicable within the NSUH survey to distinguish between habitat loss/deterioration due to chronic erosion that occurred prior to 1995 and that since 1995, or the causes of such erosion. Thus, the habitat area mapped, along with obvious losses, is likely to be an underestimate of the total area of 7130 Blanket bogs (* if active bog) present in 1995. See also the peat formation attribute under structure and functions.

4 Range

Each habitat's range at site level, in the form of habitat distribution, has been recorded through the mapping carried out through the NSUH and these are reproduced (see maps 1–10). The target is that there should be no decline from the current distribution.

5 Structure and functions

Structure and functions relates to the physical components of a habitat ("structure") and the ecological processes that drive it ("functions"). For upland habitats, these include a range of aspects such as soil chemistry, vegetation composition, hydrological regime, community diversity, habitat quality, species occurrence, indicators of local distinctiveness, erosion, disturbed ground, evidence of burning and negative species occurrence. These structure and functions are expanded on in the sections below.

At Carlingford Mountain SAC, the structure and functions of 4010 Wet heaths were assessed as Unfavourable – Bad. Reasons for failure included inadequate cover of desirable species including *Cladonia* spp., *Sphagnum* spp., *Racomitrium lanuginosum* and pleurocarpous mosses. Excessive grazing and poor physical structure were also recorded in the habitat.

The structure and functions of 4030 Dry heaths were assessed as Unfavourable – Bad in the SAC. Reasons for failure included inadequate cover of desirable species including bryophytes and lichens, inadequate cover of positive indicator species, and western gorse (*Ulex gallii*) comprising an excessive proportion of dwarf shrub cover. Poor vegetation structure was also an issue due to excessive grazing and poor structural diversity of ling (*Calluna vulgaris*) being recorded.

The structure and functions of 4060 Alpine and Boreal heaths were also assessed as Unfavourable – Bad. Reasons for failure included excessive cover of the negative indicator species common bent (*Agrostis capillaris*), poor vegetation structure due to excessive browsing, and excessive burning was also recorded within the habitat.

The structure and functions of 6230 Species-rich *Nardus* grasslands* were also assessed as Unfavourable – Bad. Reasons for failure included inadequate species richness and the absence of high quality indicator species. The vegetation structure of the habitat was poor, with an excessively low forb:graminoid ratio and an excessively low sward height. An excessive area of the habitat also showed signs of serious grazing or disturbance.

The structure and functions of 7130 Blanket bogs (* if active bog) were assessed as Unfavourable – Bad. Reasons for failure included inadequate number of positive indicator species, excessive cover of the non-native moss *Campylopus introflexus* and excessive grazing.

The structure and functions of 7230 Alkaline fens were assessed as Favourable as the monitoring stop recorded in the habitat did not fail any criteria, including 50% of live leaves and shoots exceeding the 5cm above ground surface target. However, it should be noted that, despite exceeding 5cm in height, the tussocks of black bog-rush (*Schoenus nigricans*) within the monitoring stop were heavily grazed.

The structure and functions of 8110 Siliceous screes were assessed as Unfavourable – Bad. Inadequate cover of bryophytes and lichens, excessive cover of the non-native moss species *Campylopus introflexus* and an inadequate number of positive indicator species were reasons for failure. The vegetation structure and physical structure were good with no failures in the relevant criteria.

8220 Siliceous rocky slopes were assessed as Unfavourable – Bad (although the vegetation structure of the habitat was not assessed by Roche *et al.,* 2014). Vegetation composition was poor, with failure due to an inadequate number of positive indicator species and excessive cover of the non-native moss *Campylopus introflexus*.

The structure and functions of 8210 Calcareous rocky slopes were not assessed by Roche *et al.* (2014) as the habitat was not recorded in the SAC during the NSUH. The structure and functions of 7140 Transition mires and quaking bogs, though recorded in the SAC, were not assessed either.

5.1 Ecosystem function

Ecosystem function is assessed primarily through consideration of soil nutrient levels for all habitats and also water quality for 7230 Alkaline fens. For 7130 Blanket bogs (* if active bog) and 7230 Alkaline fens, additional consideration is given to peat formation and hydrology.

5.1.1 Ecosystem function: soil nutrients

An attribute to assess the soil nutrients is common to each of the upland habitats with a view to maintaining the soil nutrient status within the natural range suited to the habitat. Relevant nutrients and natural ranges have yet to be defined. Nitrogen deposition and associated acidification are noted as being relevant to all upland habitats in NPWS (2013). The target for each habitat is to maintain the soil pH and nutrient status within the natural ranges.

5.1.2 Ecosystem function: peat formation

Ecosystem function of 7130 Blanket bogs (* if active bog) and 7230 Alkaline fens is further assessed through peat formation. For 7130 Blanket bogs (* if active bog), Perrin *et al.* (2014) established an overriding assessment of blanket bog structure and functions based on the proportion of degraded bog within a site which includes eroding bog and cutover bog which would previously have been this Annex I habitat. If more than 1% of the combined area of active bog (Annex I habitat 7130*), inactive bog (Annex I habitat 7130), eroded bog (habitat category PB5 – Fossitt, 2000) and recently cutover bog (habitat PB4 – Fossitt, 2000) is inactive, eroded or cutover then it should be assessed as Unfavourable – Inadequate, even if the results of the monitoring stops are more positive. If more than 5% of the combined area is inactive, eroded or cutover it is assessed as Unfavourable – Bad.

The EU habitats interpretation manual (European Commission, 2013) defines active blanket bog as "still supporting a significant area of vegetation that is normally peat-forming". For the purposes of defining favourable conservation condition of the Annex I habitat, the target is that at least 99% of the total Annex I blanket bog area is active bog.

For 7230 Alkaline fens, peat formation is dependent on water levels being slightly below or above the soil surface for *c*. 90% of the time. The target is to maintain active peat formation, where appropriate.

5.1.3 Ecosystem function: hydrology

Ecosystem function of 7130 Blanket bogs (* if active bog) and 7230 Alkaline fens is further assessed through assessment of hydrology. Regarding 7130 Blanket bogs (* if active bog), drains (cut for purposes of peat cutting, afforestation, etc.) and erosion gullies impact on the hydrology of blanket bog in the local vicinity. The target for 7130 Blanket bogs (* if active bog) is for the natural hydrology to be unaffected by drains and erosion gullies. The process of restoring hydrological integrity of blanket bog may impact areas of heath habitats e.g. where the latter may have colonised drained blanket bogs as discussed in Section 1.3. The target for 7230 Alkaline fens is to maintain the appropriate natural hydrological regimes necessary to support the natural structure and functioning of the habitat.

5.1.4 Ecosystem function: water quality

Ecosystem function of 7230 Alkaline fens is further assessed through assessment of water quality. The target is to maintain the appropriate water quality, particularly nutrient levels, to support the natural structure and functioning of the habitat.

5.2 Community diversity

Roche *et al.* (2014) recorded habitat information based on a provisional list of vegetation communities which is detailed in the NSUH manual (Perrin *et al.*, 2014). Data is presented in the following tables on the abundance of the various communities that comprise upland Qualifying Interest habitats at Carlingford Mountain SAC together with the area of each of these communities and the percentage of the SAC that these communities cover (hepatic mats associated with Qualifying Interests are considered under the indicators of local distinctiveness attribute). The habitats 8110 Siliceous screes, 8210 Calcareous rocky slopes and 8220 Siliceous rocky slopes rocky are each defined by just one

provisional vegetation community; therefore, the community diversity attribute is not applied to these habitats.

The target for the SAC is to maintain the variety of vegetation communities within habitats 4010 Wet heaths, 4030 Dry heaths, 4060 Alpine and Boreal heaths, 6230 Species-rich *Nardus* grasslands*, 7130 Blanket bog (* if active bog), 7140 Transition mires and 7230 Alkaline fens, subject to natural processes.

NSUH code	NSUH community	Area (ha)	% of SAC
WH1a	Schoenus nigricans – Erica tetralix wet heath – continuous cover sub- community	31.7	1.02
WH1b	Schoenus nigricans – Erica tetralix wet heath – open sub-community	0.04	0.001
WH2	Trichophorum germanicum – Cladonia spp. – Racomitrium lanuginosum wet heath	4.0	0.13
WH3	<i>Calluna vulgaris – Molinia caerulea – Sphagnum capillifolium</i> wet/damp heath	149.7	4.83
WH4a	<i>Trichophorum germanicum – Eriophorum angustifolium</i> wet heath – typical sub-community	4.8	0.15
WH4b	Trichophorum germanicum – Eriophorum angustifolium wet heath – Calluna vulgaris sub-community	54.8	1.77
WH4c	Trichophorum germanicum – Eriophorum angustifolium wet heath – Juncus squarrosus sub-community	5.8	0.19
WH5	Trichophorum germanicum – Nardus stricta – Racomitrium lanuginosum montane wet heath	32.3	1.04

5.2.1 Community diversity data for 4010 Wet heaths

5.2.2 Community diversity data for 4030 Dry heaths

NSUH code	NSUH community	Area (ha)	% of SAC
DH1	Ulex gallii - Erica cinerea dry heath	134.6	4.34
DH3	<i>Calluna vulgaris – Erica cinerea</i> dry heath	891.3	28.74
DH4	<i>Calluna vulgaris – Sphagnum capillifolium</i> dry /damp heath	1.0	0.03
DH6	Calluna vulgaris – Vaccinium myrtillus dry heath	46.4	1.50

5.2.3 Community diversity data for 4060 Alpine and Boreal heaths

NSUH code	NSUH community	Area (ha)	% of SAC
MH1a	Calluna vulgaris – Racomitrium lanuginosum montane heath – typical	28.8	0.93
	sub-community		

NSUH code	NSUH community	Area (ha)	% of SAC
UG1c	Agrostis capillaris – Festuca ovina upland grassland - species-rich sub- community	5.6	0.18
UG2c	Nardus stricta – Galium saxatile upland grassland - species-rich sub- community	7.7	0.25

Community diversity data for 6230 Species-rich Nardus grasslands*

5.2.4 Community diversity data for 7130 Blanket bogs*

Only active bog communities are shown.

NSUH code	NSUH community	Area (ha)	% of SAC
BB3	Eriophorum vaginatum – Sphagnum papillosum bog	10.3	0.33
BB5a	<i>Calluna vulgaris – Eriophorum</i> spp. bog – typical sub-community	77.4	2.49
BB5b	<i>Calluna vulgaris – Eriophorum</i> spp. bog <i>– Juncus squarrosus</i> sub- community	3.1	0.10
BB6a	<i>Eriophorum angustifolium – Juncus squarrosus</i> bog – typical sub- community	0.6	0.02
HW1i	Sphagnum denticulatum/cuspidatum hollow – upland variant	1.2	0.04

5.2.5 Community diversity data for 7140 Transition mires

NSUH		Area	% of
code	NSUH community	(ha)	SAC
PFLU5	Carex rostrata – Sphagnum spp. flush	0.35	0.01
RFEN1b	Carex rostrata fen - species-poor sub-community	1.3	0.04

5.2.6 Community diversity data for 7230 Alkaline fens

NSUH code	NSUH community	Area (ha)	% of SAC
RFLU1a	Carex viridula oedocarpa – Pinguicula vulgaris – Juncus bulbosus flush - brown moss	21.2	0.69
	sub-community		
RFLU4	Schoenus nigricans – Scorpidium scorpioides flush	24.1	0.78

5.3 Vegetation composition

Vegetation composition is assessed through a range of attributes tailored to each of the habitats. In general terms, they establish minimum thresholds for the occurrence or cover of desirable species and maximum thresholds for undesirable species.

5.3.1 Vegetation composition: positive indicator species

The attribute for positive indicator species is common to each of the upland Annex I habitats, and habitat-specific lists of the positive indicator species are presented in the NSUH manual (Perrin *et al.*, 2014). A positive species criterion is set to ensure that vegetation remains representative of the

habitat and is not degrading or succeeding to a different habitat. The target by which this attribute is measured varies between habitats. Descriptions of these habitats can be found in the NSUH manual (Perrin *et al.*, 2014).

For some habitats, a certain number of positive indicator species is required. At least seven positive indicator species are required at each monitoring stop for 7130 Blanket bogs (* if active bog). For 8110 Siliceous screes, the positive indicator attribute is only applied to block scree; examples of shaley, small structure scree are not assessed under this attribute. At least one positive indicator species is required to be present within the vicinity of each monitoring stop. The positive indicator list is the same as for 8220 Siliceous rocky slopes. For 8210 Calcareous rocky slopes, at least three positive indicator species should occur within the vicinity of each monitoring stop and at least one fern or *Saxifraga* species from the positive indicator list is required.

6230 Species-rich *Nardus* grasslands* require at least seven positive indicator species present at each monitoring stop and at least two high quality species for base-rich examples of the habitat and at least one for base-poor examples of the habitat.

7140 Transition mires require at least three positive indicator species for in-filling pools and flushes and at least six for fens, and also at least one core positive indicator species present at each monitoring stop. In addition, 25% total cover of positive indicator species is required.

7230 Alkaline fens require at least one brown moss positive indicator species at each monitoring stop, and at least two positive vascular plant indicator positive indicator species for small-sedge flushes and at least three for black bog-rush (*Schoenus nigricans*) flush and bottle sedge (*Carex rostrata*) fens. In addition, at least 20% total cover of positive indicator species (brown mosses and vascular plants) is required for small-sedge flushes and at least 75% cover is required for black bog-rush (*Schoenus nigricans*) flush and bottle sedge (*Carex rostrata*) fens.

For some other habitats, a percentage threshold is set. At least 50% cover of positive indicators is required for 4010 Wet heaths and at least 66% cover for 4060 Alpine and Boreal heaths.

4030 Dry heaths are assessed through the number of positive indicator species present and through the percentage cover of these. The positive indicator list is composed of dwarf shrub species. Only two species are required to meet the number of positive indicator species target as dry heaths are not necessarily rich in these species. However, vegetation supporting and possibly dominated by only one dwarf shrub species is not desirable. Low cover of dwarf shrubs would indicate that the habitat is transitional, usually to grassland. A maximum cover of dwarf shrubs is applied for calcareous heath, which was not recorded at Carlingford Mountain SAC (Roche *et al.*, 2014), due to the characteristically greater forb (broad-leaved herb) component.

5.3.2 Vegetation composition: other desirable species

Other elements of vegetation composition which can collectively be regarded as being desirable are also established with a range of habitat-specific targets set.

Lichens and bryophytes

Minimum thresholds for cover of lichens and bryophytes are set for habitats where a plentiful lichen/moss layer is characteristic, such as 4010 Wet heaths and 7130 Blanket bogs (* if active bog), and for 4030 Dry heaths, 4060 Alpine and Boreal heaths and 8110 Siliceous screes. The latter habitats are not necessarily rich in lichen and bryophyte species, but a minimum amount should still be present. Within the habitat-specific targets for these attributes the specific species, or groups of species which are required, are listed together with any exclusions (e.g. *Sphagnum fallax* can be indicative of degraded bog so is excluded from the 7130 Blanket bogs (* if active bog) assessment and *Campylopus* and *Polytrichum* mosses are excluded from the 4030 Dry heaths assessment as they can be indicative of disturbed conditions).

Dwarf shrub cover

A minimum threshold cover for dwarf shrubs is set for 4060 Alpine and Boreal heaths. A relatively low threshold of at least 10% is set as loose rock and *Racomitrium lanuginosum* are characteristic elements and often abundant. A lower cover of dwarf shrubs could indicate that the habitat is transitional to grassland or other montane vegetation. Note that minimum dwarf shrub cover within 4030 Dry heaths is addressed by the positive indicator species attribute.

Cross-leaved heath

Cross-leaved heath (*Erica tetralix*) is specifically mentioned in the formal title of habitat 4010 Wet heaths and is the only characteristic species listed in European Commission (2013). Whilst it is seldom abundant in wet heaths, its presence at high frequencies is considered one of the few characteristics common between the varied communities of this habitat (JNCC, 2009). The target is for the presence of cross-leaved heath within a 20m radius of each monitoring stop.

Ericoid species and crowberry

A dwarf shrub layer with ericoid species is characteristic of 4010 Wet heaths; crowberry (*Empetrum nigrum*) is only rarely present. Low cover of these species would be indicative of chronic overgrazing, burning, etc. The target is for at least 15% cover of these species at each monitoring stop.

Species richness

Species richness is a key characteristic of 6230 Species-rich *Nardus* grasslands* which distinguishes it from species-poor *Nardus* swards that are very common in the uplands of Ireland and the UK. A minimum species richness threshold of 25 has been set. Vascular plant, bryophyte and lichen species are counted.

5.3.3 Vegetation composition: negative indicator species

A percentage cover threshold for negative indicator species has been established for all upland habitats listed as Qualifying Interests for Carlingford Mountain SAC, except 8210 and 8220. Habitat-specific negative indicator species lists have been established for each of the habitats (Perrin *et al.*, 2014). Presence of these species would likely indicate undesirable impacts of management such as overgrazing, undergrazing, nutrient enrichment, agricultural improvement or impacts on hydrology.

The percentage threshold is generally set quite low such that impacts can be reversed before they become more severe.

5.3.4 Vegetation composition: non-native species

An attribute for non-native species is common to each of the upland Annex I habitats. Non-native species can be invasive and have deleterious effects on native vegetation. The target for each habitat is for the total cover of non-native species to be less than 1%. A low target is set as non-native species can spread rapidly and are most easily dealt with when still at lower abundances.

5.3.5 Vegetation composition: undesirable native species

For many of the habitats, maximum percentage cover thresholds for undesirable native species are also set. These are detailed below.

Bracken, native trees and shrubs

The cover of bracken (*Pteridium aquilinum*) and native trees and shrubs is assessed for 4010 Wet heaths, 4030 Dry heaths and the rocky habitats (8110, 8210 and 8220). Tree and shrub cover is assessed for 7130 Blanket bogs (* if active bog) and 7230 Alkaline fens. High cover of bracken would indicate that the habitat may be succeeding towards a dense bracken community, and high cover of native trees and shrubs would indicate that the habitat may be succeeding towards a dense bracken community, and high cover of native trees and shrubs would indicate that the habitat may be succeeding towards scrub or woodland due to lack of grazing or, for bog habitats, due to the habitat drying out. For chasmophytic rocky habitats (8210 and 8220), high cover of these species indicate that rocky slopes are becoming more vegetated which would impact on the niches of the chasmophytic species. For 6230 Species-rich *Nardus* grasslands*, cover of heath is also considered within this criterion.

Grass and dwarf shrubs

For 8110 Siliceous screes, a high cover of grasses or dwarf shrubs would indicate that the scree is becoming less exposed and succeeding to another habitat. The target is for the total cover of grass species and dwarf shrubs to be less than 20%.

Soft rush and common reed

High cover of soft rush (*Juncus effusus*) in 4010 Wet heaths or 4030 Dry heaths would suggest undesirable hydrological conditions. Note, however, that poor flushes dominated by soft rush often naturally occur in mosaic with these habitats. Discrete areas of this separate habitat should not be considered here. The target is for the cover of soft rush to be less than 10%. For 7230 Alkaline fens, the cover of both soft rush and common reed (*Phragmites australis*) should collectively be less than 10%.

Potential dominant species

For 7130 Blanket bogs (* if active bog), a maximum threshold is given for bog species which could potentially dominate the habitat, reflecting a reduction in diversity. The selected species are ling (*Calluna vulgaris*), many-stalked spike-rush (*Eleocharis multicaulis*), hare's-tail cottongrass (*Eriophorum vaginatum*), purple moor-grass (*Molinia caerulea*), black bog-rush (*Schoenus nigricans*)

and deergrass (*Trichoporum germanicum*). The target is for cover of each of the potential dominant species to be less than 75%.

Dwarf shrub cover

A dwarf shrub layer is characteristic of 4010 Wet heaths, but the vegetation should be a mixture of dwarf shrub and graminoid species with higher cover of dwarf shrubs being potentially indicative of drainage. A maximum target of 75% is therefore set.

Similarly, the calcareous version of 4030 Dry heaths, which was not recorded at Carlingford Mountain SAC (Roche *et al.*, 2014), characteristically has a greater component of broad-leaved herbs than siliceous dry heath. A maximum target of 75% is therefore set.

Dwarf shrub composition

The dwarf shrub layer within 4030 Dry heaths should not be composed primarily of bog-myrtle (*Myrica gale*), creeping willow (*Salix repens*) and western gorse (*Ulex gallii*). Bog-myrtle is indicative of flushed conditions and is more characteristic of wet heaths and blanket bogs. Creeping willow is more characteristic of dune heaths. Western gorse is a component of dry heath in some regions, but high proportions of it may indicate a history of undesirable levels of grazing. The target for 4030 Dry heaths is for the proportion of dwarf shrub composed of these species to be collectively less than 50%.

Moss cover

High cover of *Sphagnum* or *Polytrichum* would not be characteristic of 6230 Species-rich *Nardus* grasslands*. Such levels may indicate changes in hydrology or soil nutrients within the habitat, but are more likely to indicate that the community is inherently a marginal example of Annex I habitat 6230*. Maximum cover thresholds are set for *Sphagnum* cover to be less than or equal to 10% and for *Polytrichum* cover to be less than or equal to 25%.

5.4 Vegetation structure

Vegetation structure is assessed through a number of attributes tailored to each of the habitats. These measures assess levels of grazing and browsing, burning, *Sphagnum* condition and, for 4030 Dry heaths, growth phases of ling (*Calluna vulgaris*).

5.4.1 Browsing and grazing

Browsing is generally measured through viewing the last complete season's shoots of particular species and assessing the proportion which shows signs of having been browsed. The species which are assessed for browsing are generally the dwarf shrub species: ericoids, crowberry (*Empetrum nigrum*) and bog-myrtle (*Myrica gale*). The target for the heath habitats (4010, 4030 and 4060) and 7130 Blanket bogs (* if active bog) is for less than 33% of shoots to show signs of grazing. On the rocky habitats (8110, 8210 and 8220), live leaves of forbs and shoots of dwarf shrubs showing signs of grazing or browsing collectively should be less than 50%. An additional assessment of grazing of live leaves of specific graminoids is made for 4060 Alpine and Boreal heaths. The specific graminoids are stiff sedge (*Carex bigelowii*), wavy hair-grass (*Deschampsia flexuosa*), sheep's-fescue (*Festuca ovina*) and viviparous sheep's-fescue (*Festuca vivipara*). The target for 4060 is that less than 10% of the live leaves of the specific graminoids collectively show signs of grazing. High levels of grazing of these

species in 4060 Alpine and Boreal heaths would be undesirable as grazing is not required to maintain this habitat. Grazing levels for 6230 Species-rich *Nardus* grasslands*, 7140 Transition mires and 7230 Alkaline fens are assessed through vegetation height (see Section 5.4.4).

5.4.2 Burning

Occasional fires can be part of the natural cycle of heaths and may, under carefully controlled circumstances, be used as an occasional management tool to promote regeneration of, or diversity of, growth phases in ling (*Calluna vulgaris*). However, currently most hill fires in Ireland are intentionally started to encourage grass growth for livestock. Fires that are too intense, too frequent, too extensive or which occur in sensitive areas are damaging to habitats. An assessment of burning is made for the heath habitats (4010, 4030 and 4060) and 7130 Blanket bogs (* if active bog). Habitat-specific lists of sensitive areas where burning should not occur are presented in Perrin *et al.* (2014). Examples of sensitive areas are: 'areas where soils are thin and less than 5cm deep' and 'pools, wet hollows, haggs and erosion gullies, and within 5–10m of the edge of watercourses'.

4010 Wet heaths and 7130 Blanket bogs (* if active bog) have the same targets relating to there being no signs of burning into the moss, liverwort or lichen layer or exposure of peat surface due to burning and no signs of burning in sensitive areas. The target for 4030 Dry heaths is no sign of burning in sensitive areas. The target for 4060 Alpine and Boreal heaths, which does not require burning for the maintenance of the habitat, is for there to be no signs of burning within the habitat.

5.4.3 Sphagnum condition

Disturbance to *Sphagnum* is assessed for habitats 4010 Wet heaths and 7130 Blanket bogs (* if active bog). High levels of disturbed *Sphagnum* would indicate undesirable levels of grazers. For both habitats, the target is for less than 10% of the *Sphagnum* cover to be crushed, broken and/or pulled up.

5.4.4 Vegetation height

Vegetation height is used as an indication of grazing intensity for 6230 Species-rich *Nardus* grasslands*, 7140 Transition mires and 7230 Alkaline fens. For the latter habitats, the proportion of live leaves and/or flowering shoots of vascular plants that are of a height more than 15cm above the ground surface should be at least 50%. Vegetation heights lower than these would indicate undesirable levels of grazing. For 6230 Species-rich *Nardus* grasslands*, 25% of the sward should be between 5cm and 50cm tall. These lower and upper height limits are set to record overgrazing and undergrazing respectively.

5.4.5 Growth phases of ling

The growth phases of ling (*Calluna vulgaris*) are assessed for 4030 Dry heaths. The growth phases are pioneer (<10cm high), building (10-30cm high) and mature (>30cm high). The target is that all growth phases of ling should occur throughout the habitat, outside sensitive areas, with at least 10% of cover in the mature phase. As burning is undesirable within sensitive areas, it is not reasonable to require the stated diversity of growth phases within these areas. The list of sensitive areas is presented in the NSUH manual (Perrin *et al.*, 2014).

5.4.6 Senescent ling

The cover of senescent ling (*Calluna vulgaris*) in 4030 Dry heaths is also assessed. Senescence is part of the natural cycle of ling but a dominance of ling in the senescent phase would indicate a lack of management (appropriate grazing or burning) to promote ling regeneration. The target is that the cover of senescent ling should be less than 50%.

5.4.7 Forb to graminoid ratio and litter cover

Two attributes unique to 6230 Species-rich *Nardus* grasslands* are forb to graminoid (grass/sedge/rush) ratio and litter cover. Forb richness is characteristic of conservation value swards. The target is for the forb component of the forb:graminoid ratio to be 20-90%.

High levels of leaf litter can be indicative of undergrazing and rank swards, with a resulting impact on species richness. The target is for a cover of litter less than or equal to 20%.

5.5 Physical structure

The physical structure of upland habitats can be damaged by drainage, walking trails, unsuitable levels of grazing and erosion. Physical structure is assessed through a number of attributes tailored to each of the habitats. Elements which are assessed for the various habitats comprise disturbed bare ground, drainage and erosion; these are detailed below.

5.5.1 Disturbance/Disturbed bare ground

Disturbance applies to 8110 Siliceous screes and the disturbed bare ground attribute is common to all the other upland habitats listed as Qualifying Interests for Carlingford Mountain SAC, except the chasmophytic rocky habitats (8210 and 8220). Disturbance can include hoof marks, wallows, human footprints, vehicle and machinery tracks and, for 8110 Siliceous screes, scree running. Excessive disturbance can result in loss of characteristic species and presage erosion for heaths and peatlands. Scree is subject to naturally recurrent disturbance, but high levels of disturbance may impact on vegetation cover and diversity.

The target for 8110 Siliceous screes is set at there being less than 10% ground disturbed by human and animal paths, scree running or vehicles. The target for 4010 Wet heaths, 4030 Dry heaths, 4060 Alpine and Boreal heaths and 7130 Blanket bogs (* if active bog) is set at there being less than 10% disturbed bare ground which, in the case of peatlands, can indicate that such disturbance may be impeding recovery of vegetation on damaged areas.

5.5.2 Drainage

Drainage can result in loss of characteristic species and transition to drier habitats. This attribute is applied to 4010 Wet heaths, 7130 Blanket bogs (* if active bog), 7140 Transition mires and 7230 Alkaline fens. For each habitat, the target is the area showing signs of drainage from heavy trampling, tracking or ditches to be less than 10%.

5.5.3 Erosion

Erosion is assessed for 7130 Blanket bogs (* if active bog). Erosion leads to loss of peat from the blanket bog system, increases in peat sediment in nearby water courses, loss of blanket bog habitat and drainage. The target is that less than 5% of the greater bog mosaic comprises erosion gullies and eroded areas. The greater bog mosaic incorporates the blanket bog itself and associated vegetation types and non-vegetation cover types that appear to have been derived from former blanket bog, including, but not limited to bare peat, loose rock, gravel and running water.

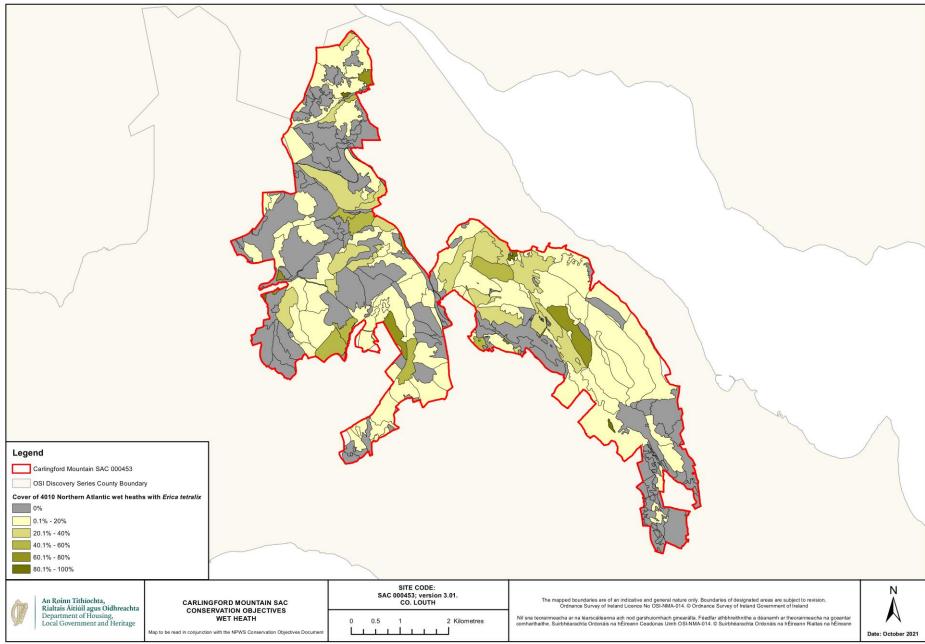
5.5.4 Tufa formations

For 7230 Alkaline fens, a further measure of disturbance in areas where tufa is present is assessed. The target is that the disturbed proportion of vegetation cover is less than 1%.

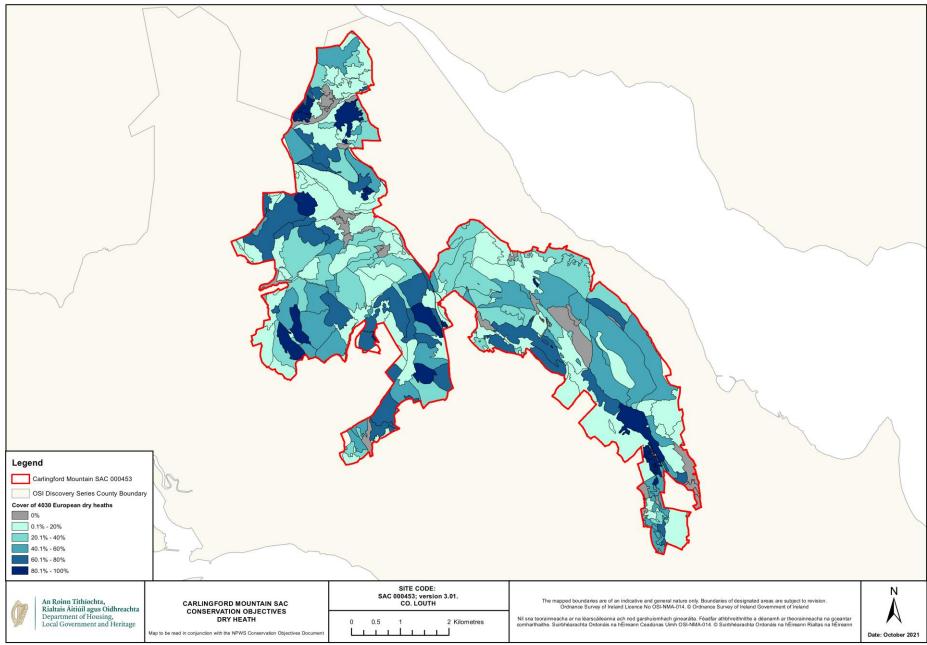
5.5.5 Grazing or disturbance

An additional assessment of grazing or disturbance is made for 6230 Species-rich *Nardus* grasslands* in the local vicinity of the monitoring stops. Serious grazing and disturbance can impact on species richness, nutrient status and soil stability. The target is for area of habitat showing signs of serious grazing or disturbance to be less than 20m².

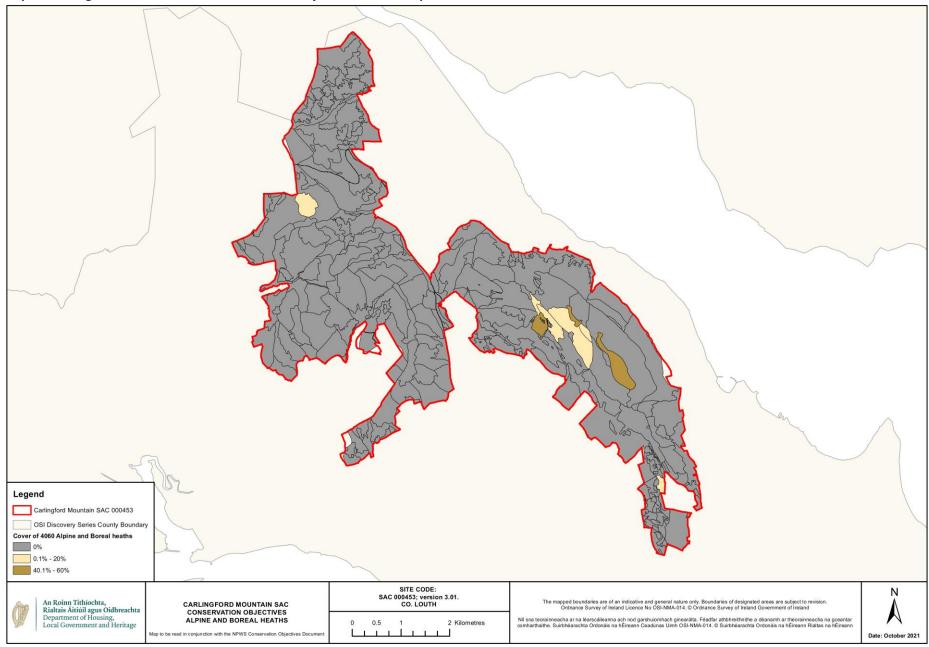
5.6 Indicators of local distinctiveness

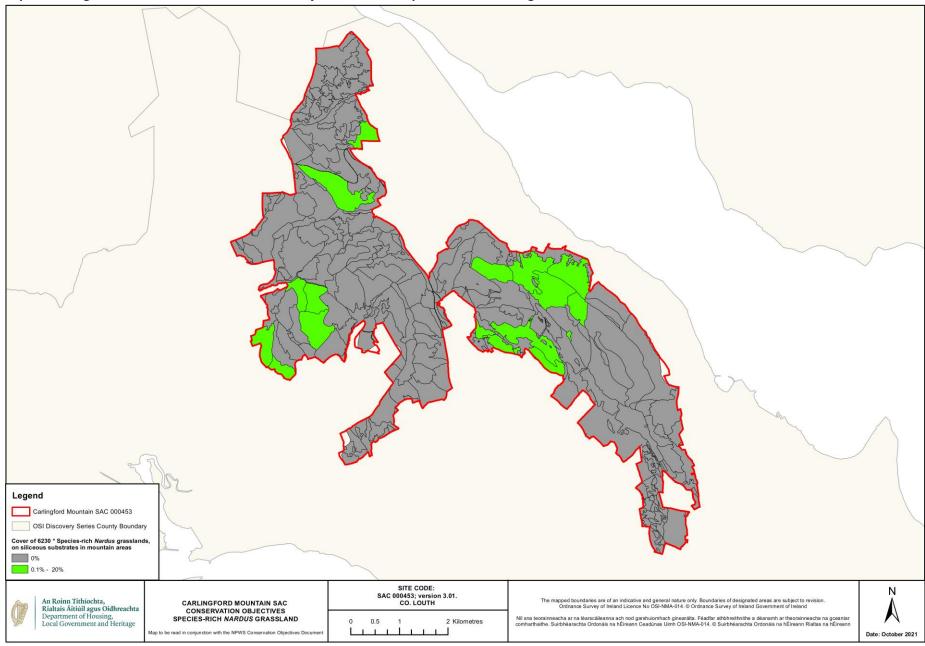

Roche *et al.* (2014) compiled and mapped existing rare and notable plant records for Carlingford Mountain SAC and added any new records collected during the NSUH survey. Rare species (those considered at least *Near Threatened* on the appropriate Red List) which could be assigned to a particular habitat, should be considered indicators of local distinctiveness for habitats. The target is for no decline in distribution or population sizes of rare, threatened or scarce species associated with the particular habitat.

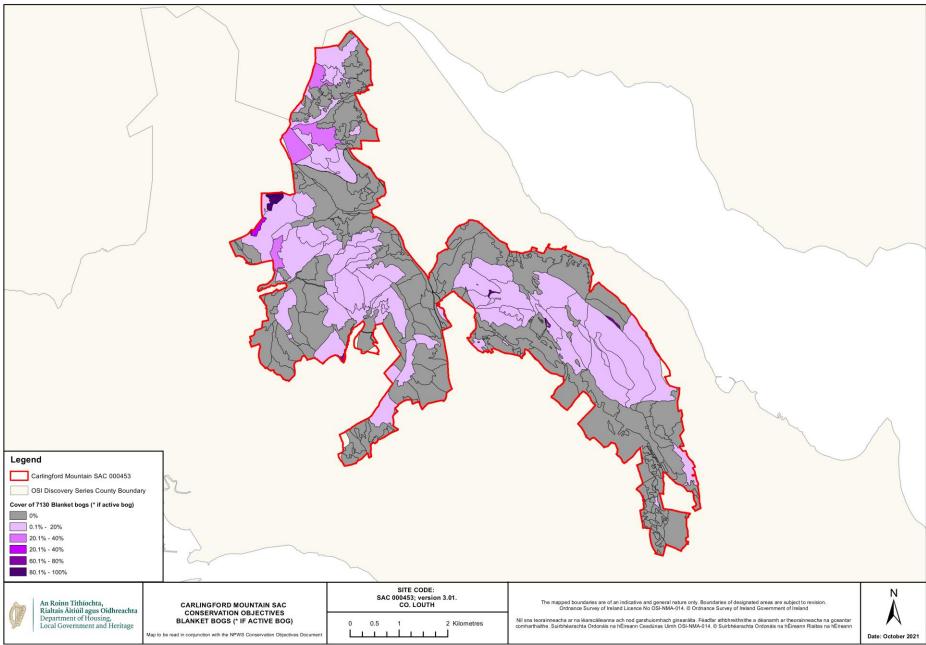
Where hepatic mats of the *Calluna vulgaris-Herbertus aduncus* community have been recorded within a particular habitat by Roche *et al.* (2014), these are also listed as indicators of local distinctiveness. No assessment of the conservation status of this community has been conducted but proposals for such an assessment are presented in Barron & Perrin (2014). The target for these hepatic mats is for no decline in status of hepatic mats associated with the habitat in question.

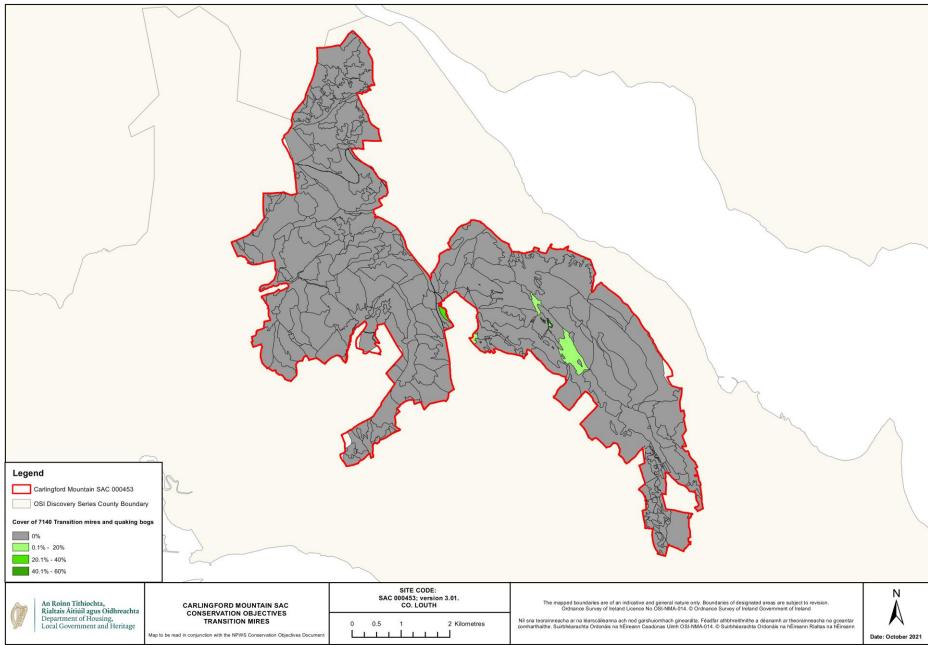

6 References

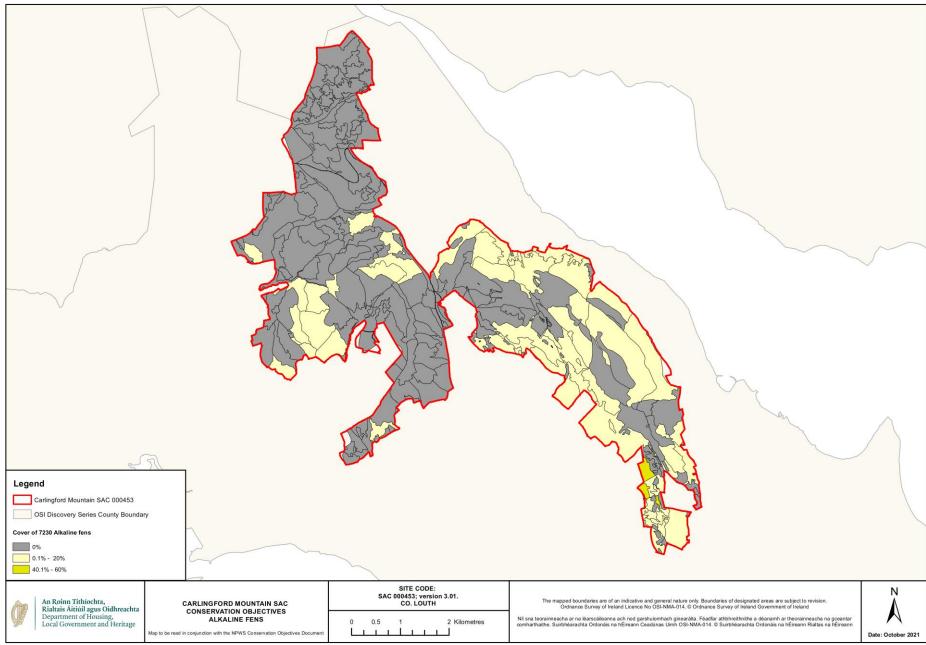
- Barron, S.J. & Perrin, P.M. (2014) National Survey of Upland Habitats (Phase 4, 2013–2014) Summary report. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland.
- European Commission (2013) Interpretation manual of European Union habitats EUR 28. European Commission, DG Environment.
- Fossitt, J.A. (2000) A guide to habitats in Ireland. The Heritage Council, Kilkenny.
- JNCC (2009) Common Standards Monitoring guidance for upland habitats. JNCC, Peterborough, UK.
- NPWS (2013) The status of EU protected habitats and species in Ireland. Vol. 2. Habitat assessments. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland.
- Perrin, P.M., O'Hanrahan, B., Roche, J.R. & Barron, S.J. (2009) Scoping Study and Pilot Survey for a National Survey and Conservation Assessment of Upland Vegetation and Habitats in Ireland. Unpublished report to National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland.
- Perrin, P.M., Barron, S.J., Roche, J.R. & O'Hanrahan, B. (2014) Guidelines for a national survey and conservation assessment of upland vegetation and habitats in Ireland. Version 2.0. Irish Wildlife Manuals, No. 79. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland.
- Roche, J.R., Perrin, P.M., Barron, S.J. & Daly, O.H. (2014) National Survey of Upland Habitats (Pilot Survey Phase, 2009–2010), Site Report No. 4 (Revision): Carlingford Mountain cSAC (000453)
 Co. Louth. National Parks and Wildlife Service, Department of the Arts, Heritage and the Gaeltacht, Dublin, Ireland.

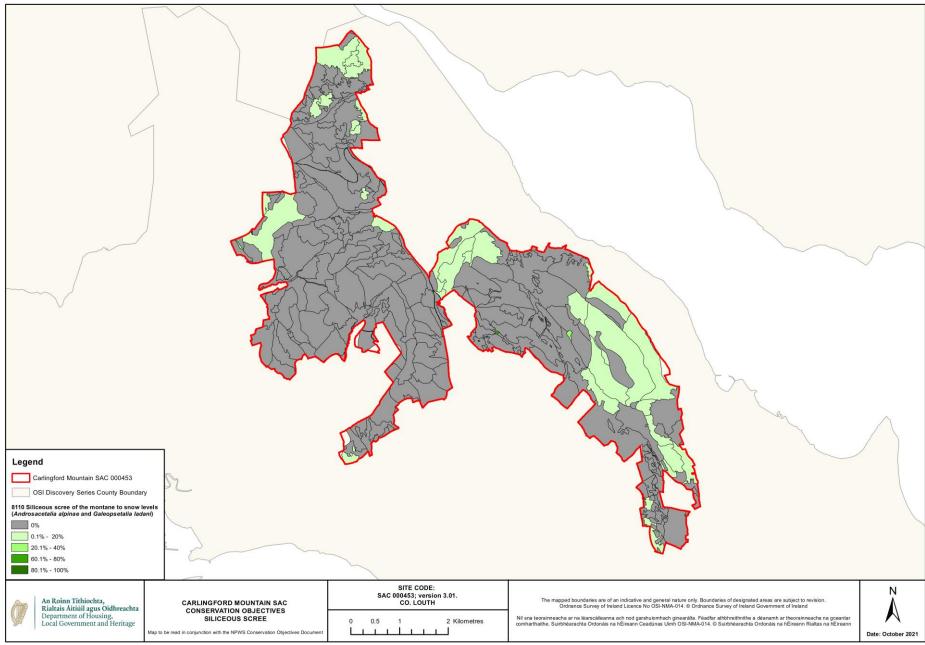

Map 1 Carlingford Mountain SAC Conservation Objectives – 4010 Wet Heaths

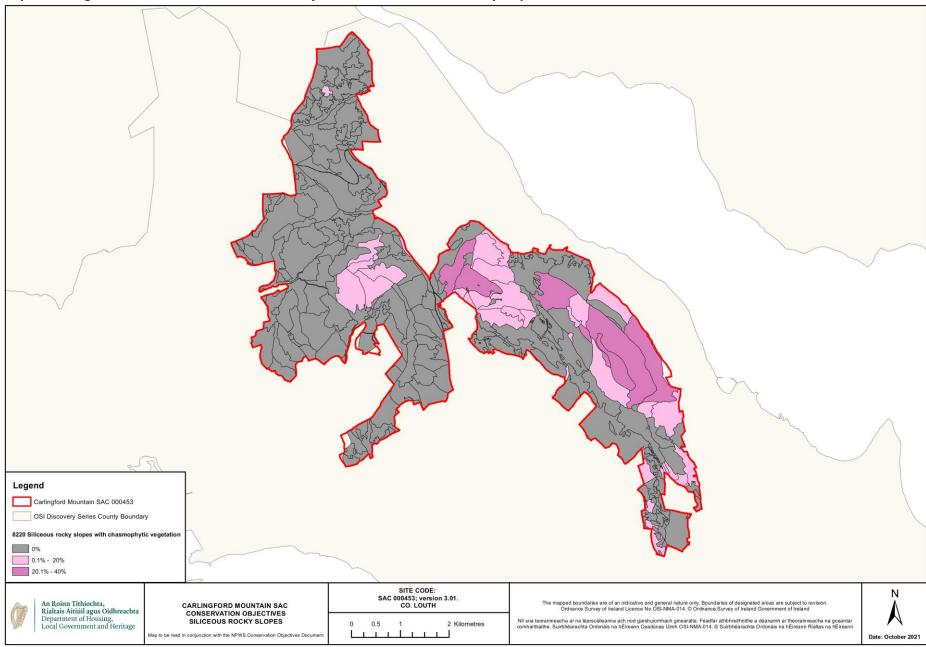

Map 2 Carlingford Mountain SAC Conservation Objectives – 4030 Dry Heaths


Map 3 Carlingford Mountain SAC Conservation Objectives – 4060 Alpine and Boreal Heaths


Map 4 Carlingford Mountain SAC Conservation Objectives – 6230 Species-rich Nardus grasslands*


Map 5 Carlingford Mountain SAC Conservation Objectives – 7130 Blanket Bog (* if active bog)





Map 9 Carlingford Mountain SAC Conservation Objectives – 8220 Siliceous Rocky Slopes

