Inshore boat-based surveys for cetaceans: Irish Sea

Simon Berrow1,2, Joanne O’Brien2, Conor Ryan1,2, Enda McKeogh2 and Ian O’Connor2

1. Irish Whale and Dolphin Group, Merchants Quay, Kilrush, County Clare
2. Marine Biodiversity Research Group, Galway-Mayo Institute of Technology, Dublin Road, Galway

Final Report to the National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht

October 2011
Inshore boat-based surveys for cetaceans: Irish Sea

Survey team:

Simon Berrow (Project Manager and Primary Observer)
Joanne O’Brien (Passive Acoustics and Primary Observer)
Conor Ryan (Primary Observer)
Enda McKeogh (Logger)
Ian O’Connor (GIS support)

Cover image: Minke whale riding the stern wave in the Irish Sea during the inshore survey © DAHG
Inshore boat-based surveys for cetaceans

Summary

Concurrent visual and acoustic surveys for cetaceans were carried out in two survey blocks in the Irish Sea to investigate species distribution, relative abundance and absolute abundance where possible.

Single platform line-transect surveys were carried out in the northern Irish Sea in July and in the southern Irish Sea in August 2011. During the two surveys, we carried out 348km of survey effort along 23 tracklines of which 100% of the northern Irish Sea survey and 79% of the southern Irish Sea survey were in sea-state ≤3. We recorded a total of 71 cetacean sightings comprising 111 individuals of two species. In addition there were five seal sightings of two species and a single sighting of a basking shark. Harbour porpoise was by far the most abundant species followed by minke whale. Grey seal was the most frequent seal species with only a single sighting of a common seal.

A total of 57 sightings of cetaceans were made in Block A in the northern Irish Sea; 51 harbour porpoise sightings and six sightings of individual minke whales. In addition single grey seals were sighted on two occasions. In Block B in the southern Irish Sea 14 cetacean sightings were recorded, all harbour porpoise sightings and sightings of a single common seal and two sightings of single grey seals. This provided sighting rates of harbour porpoise of 0.29 sightings per km or 5.24 sightings per hour in Block A and 0.10 harbour porpoise per km or 1.91 sightings per hour in Block B. Relative abundance was estimated at 0.50 harbour porpoise per km or 9.15 per hour in Block A and 0.16 harbour porpoise per km or 3.00 individuals per hour in Block B.

In Block A the adult to sub-adult ratio was 5.8:1 or 14.7% sub-adults (juveniles and calves) and the adult to calf ratio was 9.7:1 or 10.3%. In Block B the adult to sub-adult ratio was 3.4:1 or 23% and the adult to calf ratio was 17:1 or 6%.

Passive Acoustic Monitoring was carried out during each survey and a total of 16 acoustic encounters were logged at an overall rate of 0.05 acoustic encounters per km. All detections were of harbour porpoise. The number of acoustic encounters recorded per survey was consistent, but was low, especially in block A, when compared to the total number of sightings. Of the 16 detections logged, a total of 12 (75%) were only logged acoustically with no concurrent visual record. Thus acoustic monitoring does suggest not all harbour porpoise present in the survey area were recorded visually but it also suggests that no dolphin sightings within the acoustic monitoring range of the vessel were over-looked.

Sufficient sightings for a robust estimate were only available for harbour porpoise in Block A. A density estimate of 1.585 ± 0.219 harbour porpoise per km² was recorded with a CV of 0.14. This CV was increased to 0.32 if the track line was used as the sample but with no change to the overall density estimate. Densities in the northern Irish Sea were high compared to similar surveys carried out along the western seaboard of Ireland in 2010 using the same methodology.

Despite differences in overall sea conditions the data suggests harbour porpoise densities are lower in the southern Irish Sea compared to areas further north and the area adjacent to North County Dublin and Dublin Bay may provide particularly good habitats for harbour porpoise.
Introduction

Waters within the Irish Exclusive Economic Zone (EEZ) are known to be some of the most important in Europe for cetaceans (Berrow, 2001). While there has been a steady increase in cetacean research in Ireland, dedicated surveys to estimate the abundance of cetaceans in a defined area are limited to date and are presently insufficient to detect population trends (O’Brien et al. 2009).

Since 1994 there has been a concerted effort to map the distribution and relative abundance of all cetacean species occurring within the Irish EEZ largely using platforms of opportunity. These surveys including initiatives such as European Seabirds at Sea (ESAS) research, ISCOPE and PRecAST have attempted to include seasonal coverage, especially of offshore waters (Pollock et al. 1997; Ó Cadhla et al. 2004; Wall et al. 2006; 2011; Berrow et al. 2006; 2010).

The first dedicated double-platform cetacean survey in Ireland was SCANS-I (Small Cetacean Abundance in the North Sea) carried out during summer of 1994, but it only covered the Celtic Shelf region of the Irish EEZ (Hammond et al. 2002). During 2000, the SIAR survey covered both inshore and offshore waters of the western seaboard using a double-platform visual survey technique from which the abundance of common and white-sided dolphins was estimated (Ó Cadhla et al. 2004). In summer 2005, a second SCANS survey (SCANS-II, 2008) was carried out which this time included all Irish continental shelf waters and the Irish Sea. Abundance estimates for a variety of species including harbour porpoise, common, bottlenose and white-beaked dolphin and minke whale were derived (SCANS-II, 2008). In 2007, a survey of species in European Atlantic waters beyond the continental shelf (CODA) was carried out offshore and provided abundance estimates for common, striped and bottlenose dolphins and long-finned pilot, sperm, minke, fin whales and beaked whales (Hammond et al. 2010).

Small scale dedicated surveys were carried out at eight survey locations since 2007 in coastal waters and bays using a single-platform line transect technique to estimate the abundance of harbour porpoises (Berrow et al., 2008a; 2008b; 2009; Ryan et al. 2010). Land-based surveys through ISCOPE attempted to record and monitor cetaceans inshore (Berrow et al. 2010). However, there are still many gaps in coverage (see Wall, 2010).

The Irish Whale and Dolphin Group (IWDG) and the Galway-Mayo Institute of Technology (GMIT) were contracted to carry out concurrent visual and passive acoustic surveys of two survey blocks in the Irish Sea during 2011, as part of the monitoring of cetacean species in Irish continental shelf waters.

Objectives

The objectives of the present survey were, within each survey block, to determine:

(a) occurrence of cetaceans and other marine species of interest;
(b) species relative abundance (no. of sightings/individuals per unit effort);
(c) cetacean species abundance, where possible (i.e. population/density estimation).
Methods

Survey blocks

The two inshore survey blocks in the Irish Sea are shown in Figure 1. Each block was 336 nm2 (1152 km2) in surface area with a perimeter of 48nm by 7nm and was located approximately between 6nm and 12nm from shore off the east coast of Ireland.

Figure 1. Map of Ireland showing the locations of survey blocks surveyed for cetaceans in 2011.
Survey platform

One vessel was chartered to cover both survey blocks during the survey period. *MV Rocinante* is an ex pilot boat capable of cruising speeds of 10kts. It has a viewing area on top of the wheelhouse which gives a platform height of 4m above sea level which provides an excellent survey position (Fig. 2).

![Survey platform](image)

Figure 2. MV Rocinante with survey platform on the flying bridge

Survey methodology

Conventional single platform line-transect surveys were carried out along pre-determined track lines supplied by the NPWS. These were similar in survey design to NPWS-contracted survey blocks off western Ireland in 2010 (see Ryan *et al.*, 2010)

During survey effort, the vessel travelled at a speed of 12-16 km hr⁻¹ (8-10 knots), which was 2-3 times the average speed of the species most likely to be encountered (e.g. harbour porpoise) as recommended by Dawson *et al.* (2008). Two primary observers were positioned at any one time, on the flying bridge and a rotation of 30 minutes on port, 30 minutes on starboard and 30 minutes rest was observed. Only observers with experience in cetacean visual surveys and species identification in Irish waters were used as primary observers. Primary observers watched with naked eye from dead ahead to 90° to port or starboard depending on which side of the vessel they were stationed. Opticron 10x50 marine binoculars
with reticle eyepieces were used to confirm species identification and assist in distance estimation. In addition, sightings of seals and any other marine megafauna (e.g., basking shark) were also recorded.

During each transect the position of the survey vessel was tracked continuously through a GPS receiver fed directly into a laptop while survey effort, including environmental conditions (sea-state, wind strength and direction, glare etc.) were recorded directly onto LOGGER software (©IFAW) every 15 minutes. When a sighting was made the position of the vessel was recorded immediately in LOGGER and the angle of the sighting from the track of the vessel and the radial distance of the sighting from the vessel recorded. The angle was recorded to the nearest degree via an angle board attached to the vessel immediately in front of each observer. These data were communicated to the recorder in the wheelhouse via two-way radio. Accurate distance estimation is essential for distance sampling. Distance sticks were made for observers using the Heinemann Equation (Heinemann, 1981) which were used to aid distance estimation.

Sightings rate and relative abundance

Sightings rate was calculated as the number of sightings per km traveled or hour of survey effort, while relative abundance was calculated as the number of animals recorded per km of transect or per hour of coverage. Both measures were restricted to observations made in sea state ≤3.

Absolute abundance estimation

The statistical package DISTANCE (Version 5, Release 2.0, University of St Andrews, Scotland) was used for calculating the detection function, which is the probability of detecting an object on the vessel’s track-line. The estimated detection function is used to calculate the density of animals within a prescribed area passed through by the vessel. In this survey we assumed that all animals occurring on the track-line were observed i.e. that the detection function \(g(0) = 1 \). The DISTANCE software allows the user to select a number of models in order to identify the most appropriate for the data. It also allows for truncation of outliers when estimating variance in group size.

All sightings are listed in the survey block summary tables. We used the survey day as the sample with sightings used as observations. To be consistent with, and enable comparisons with Ryan *et al.* (2010), we also used the track-line as the sample with sightings used as observations. Estimates of abundance were calculated for harbour porpoise as appropriate within each survey block. Buckland *et al.* (2001) recommend a minimum of around 40-60 sightings are required for a robust estimate using the DISTANCE model.

Various models were fitted to the data. It was found that a Half-Normal model with Hermite Polynomial series adjustments best fitted the data according to Akaike’s Information Criterion (AIC) which provides an objective, quantitative method of model selection. Density estimates using models selected by the software were calculated together with estimates from data grouped into equal distance intervals of 20m up to 300m. This follows the recommendation of Buckland *et al.* (2001) who suggested that grouping of data can be used to improve robustness in the density estimator in cases of heaping or movement prior to detection (often the case with harbour porpoise) by smoothing the distance data. Buckland *et al.* (2001) also recommended at least 5% of the data at the extreme end of the observations should be truncated as they contribute little to the overall density estimation and truncation facilitates fitting of the model. We truncated at 300m which removed just one sighting from the survey of block A. The influence of cluster size (i.e. Group size) is analysed by DISTANCE using size-bias regression method with log(n) of cluster size plotted against estimated \(g(x) \).

A Chi-squared test is associated with the calculation of each detection function. If significant then this indicated that the detection function was a good fit and the estimate generated was robust. The proportion of the variability accounted for by the rate of sighting encounters, detection probability and group size is presented with each detection function. Variability associated with the encounter rate
reflects the number of sightings on each track-line, which varied from zero to up to ten sightings during the present survey. The detection probability reflects how far the sightings were from the track-line; the further sightings were from the track-line the less likely they were detected, and group size the range in group sizes recorded at each survey block.

Maps were created using Irish Grid (TM65_Irish Grid) with ArcView 3.2 and using SeaTurtle.org Maptool© while design coordinates for the survey areas were obtained from NPWS. Data related to transects, effort, location of visual and acoustic detections, abundance and density estimates were stored in a single MS Access database, which was queried from within the GIS to produce maps.

Passive Acoustic Monitoring

Passive Acoustic Monitoring (PAM) was carried out using a towed hydrophone at a distance approximately 200m astern of the survey vessel and at a depth of c.2 to 5m beneath the sea surface. The towed hydrophone array consisted of a 200m-long cable running from a fluid-filled tube containing two high frequency hydrophone elements (HP-03) situated 25cm apart at the end of the cable. The hydrophone connected to a MAGREC HP-27 buffer-box which was connected to a National Instrument DAQ-6255 USB soundcard run through a laptop computer. The track-line of the acoustic survey effort was recorded using an external GPS receiver, which provides NMEA data to PAMGUARD software (version 1.6.01 Beta).

A dedicated acoustic observer continuously monitored the incoming audio stream both visually (audio-spectrogram) and aurally using PAMGUARD. Acoustic detections of cetacean vocalisations (both clicks and whistles) were noted, described and their time and GPS locations recorded. Raw recordings were saved continuously as .WAV files and backed-up daily on an external hard-drive.

An acoustic encounter was considered a separate encounter, when a silent period of 10 minutes was recorded between acoustic detections. This followed the method used by Aguilar de Soto et al. (2004) and was consistent with similar surveys in 2010 (Ryan et al. 2010). Harbour porpoise echolocation clicks are characterized as being narrow-band, high frequency between 110 and 150kHz, with an average click duration of 2μs and a mean source level of 150dB. In comparison, dolphin clicks are characterized as being broadband ranging in frequency from 200Hz and 150kHz, therefore making identification to species level often impossible, due to overlaps in their frequency range. Further analysis of acoustic data was carried out in the lab. Species assignment was based on the criteria presented in Appendix I.

Results

Both survey blocks were surveyed in favourable conditions (i.e. sea-state ≤3) (Table 1) as per requirements outlined in the contract. All surveys were carried out during conditions where visibility was 15-20km or greater, with no precipitation and where swell height was occasionally light (≤1m).

<table>
<thead>
<tr>
<th>Survey block</th>
<th>Date</th>
<th>Distance Surveyed (km)</th>
<th>Proportion of effort in sea-state ≤3</th>
<th>Number of sightings</th>
<th>Total No. of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block A</td>
<td>10 July</td>
<td>178</td>
<td>100%</td>
<td>57</td>
<td>89</td>
</tr>
<tr>
<td>Block B</td>
<td>2 August</td>
<td>170</td>
<td>79%</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>
Sightings data

During the two surveys, we carried out 349km of survey effort along 23 track-lines of which 100% of survey effort in Block A and 79% of survey effort in Block B was in sea-state ≤3. We recorded a total of 71 cetacean sightings comprising 111 individuals of two species. In addition, there were five seal sightings of two species and a single sighting of a basking shark. Harbour porpoise was by far the most abundant species followed by minke whale. Grey seal was the most frequent seal species with only a single sighting of a common seal. Harbour porpoise was by far the most abundant species followed by minke whale and grey seal. There was a single sighting of a common seal in Block B. A summary of effort and the number of cetacean sightings is presented in Table 1.

Species List

A total of two cetacean and two seal species were recorded during the survey period (Table 2). Harbour porpoise was recorded in both survey blocks while minke whale was only recorded in Block A. Grey seal was recorded in both survey blocks and common seal only in Block B. There were additional sightings of two individual basking sharks recorded in Block A.

Table 2: Species present in each survey block (in order of frequency of occurrence)

<table>
<thead>
<tr>
<th>Survey block</th>
<th>Species</th>
<th>Sightings</th>
<th>Individuals</th>
<th>Mean Group Size (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block A</td>
<td>Harbour porpoise</td>
<td>51</td>
<td>83</td>
<td>1.69±1.31</td>
</tr>
<tr>
<td></td>
<td>Minke whale</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grey seal</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Block B</td>
<td>Harbour porpoise</td>
<td>14</td>
<td>22</td>
<td>1.57±0.85</td>
</tr>
<tr>
<td></td>
<td>Grey seal</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Common seal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Acoustic Detections

Acoustic detections of cetaceans were recorded in each block (Table 3). Clicks were recorded in both blocks during the surveys but only of harbour porpoise. Encounter duration was short with a mean of 59 seconds in Block A and eight seconds in Block B.

Table 3: Summary of acoustic detections at each survey block

<table>
<thead>
<tr>
<th>Survey block</th>
<th>Date</th>
<th>Clicks</th>
<th>Whistles</th>
<th>Acoustic events</th>
<th>Total detections</th>
<th>Range of Duration min-max (secs)</th>
<th>Mean encounter duration (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block A</td>
<td>10/07/11</td>
<td>Y</td>
<td>N</td>
<td>15</td>
<td>8</td>
<td>5-310</td>
<td>59.2</td>
</tr>
<tr>
<td>Block B</td>
<td>02/08/11</td>
<td>Y</td>
<td>N</td>
<td>11</td>
<td>9</td>
<td>2-34</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Density and abundance estimates

Sufficient sightings for a robust density estimate were calculated for harbour porpoise in the northern Irish Sea (Block A) (Table 4). During the survey of the southern Irish Sea (Block B) the total number of harbour porpoise sightings was fourteen, below the minimum required to generate robust estimates. Two analytical methods were used to determine density. Both methods provided similar density estimates (1.585 and 1.541 harbour porpoise per km2) but the method which used the track-line as the sample gave a much higher CV and therefore higher standard error and wider 95% confidence intervals (Table 4).

Table 4. Density and abundance estimates of harbour porpoise in the northern Irish Sea (Block A) on 10 July 2011.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Density ± SE (km2)</th>
<th>Abundance ± SE</th>
<th>CV</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day as sample</td>
<td>1.585 ± 0.219</td>
<td>1826 ± 252</td>
<td>0.14</td>
<td>1389 - 2400</td>
</tr>
<tr>
<td>Track line as sample</td>
<td>1.541 ± 0.493</td>
<td>1776 ± 569</td>
<td>0.32</td>
<td>917 - 3440</td>
</tr>
</tbody>
</table>

Site Analysis

Northern Irish Sea (Block A)

A survey of the Block A in the northern Irish Sea was carried out on 10 July 2011 with sea conditions of Beaufort sea-state ≤3 for the entire survey and sea-state ≤1 for 77.9% of survey effort (Figure 3). A total of 57 sightings of cetacean were made; 51 harbour porpoise sightings and six sightings of minke whale. In addition single grey seals were sighted on two occasions.

Species Diversity

Species diversity was low given the high number of sightings, with only two species of cetacean (harbour porpoise and minke whale) recorded and one seal species (grey seal). Single basking sharks were recorded on two occasions (one off effort east of Clogherhead while transiting to the start of the survey of Block A).
Figure 3. Sea state conditions for the survey of the Northern Irish Sea (Block A)

Relative abundance

Harbour porpoise were by far the most abundant species in Block A with a sightings rate of 0.33 sightings per km or 5.41 sightings per hour of survey effort. Relative abundance of harbour porpoise was estimated at 0.55 porpoise per km or 8.99 porpoise per hour of survey (Table 5). This was an order of magnitude greater than the relative abundance of minke whale or grey seal (Table 5).

Table 5. Relative abundance of cetaceans and seals recorded in Block A.

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of sightings</th>
<th>No. of individuals</th>
<th>Sightings per km</th>
<th>Numbers per km</th>
<th>Sightings per hr</th>
<th>Numbers per hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour porpoise</td>
<td>51</td>
<td>89</td>
<td>0.29</td>
<td>0.50</td>
<td>5.24</td>
<td>9.15</td>
</tr>
<tr>
<td>Minke whale</td>
<td>6</td>
<td>6</td>
<td>0.03</td>
<td>0.03</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Grey seal</td>
<td>2</td>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

The distribution of sightings along the track lines are shown in Figure 4. Most sightings of harbour porpoise were east of Rockabill and Lambay Island off north County Dublin and towards the southern end of the survey area east of Greystones, Co. Wicklow (Fig 4a). There were six sightings of individual minke whales with most sightings east of Rockabill and Lambay Island off north County Dublin (Fig. 4b).

Of the total of 83 individual harbour porpoise recorded 58 were considered adults, four juveniles and six calves. Thus the adult to sub-adult ratio was 5.8:1 or 14.7% of the population was considered sub-adults. The adult to calf ratio was 9.7:1 or 10.3%.
Figure 4a. Sighting records of harbour porpoise in Block A.
Figure 4b. Sighting records of other species (minke whale, grey seal and basking shark) in Block A.
Acoustic detections

During the survey of Block A, detections comprised only of harbour porpoise. A total of 15 acoustic events was recorded. When using the 10-minute sampling rule to separate encounters, there were a total of eight acoustic encounters (Fig. 5). Of the eight acoustic encounters, four did not have corresponding visual detections.

Figure 5. Acoustic survey effort (grey line) and harbour porpoise detections. Additional outer circles indicate simultaneous visual and acoustic detections. (Gap in track line was a result of GPS failure and not break in survey effort. No acoustic detections recorded during this period)
Absolute abundance

When using the day as the sample a half-normal with Cosine adjustments gave the lowest AIC (254.8) using DISTANCE. Data were truncated at 300m with the loss of one sighting. Mean (±SE) cluster size was 1.67 ± 0.18 and the effective search half-width was 151m or 302m effective search width. Although most variability occurred in the detection probability (65%), variability associated with cluster size was quite large accounting for 35%, which reflects the range of group sizes recorded from 1 to a maximum of 8 individuals. There was some evidence of avoidance action by porpoises as demonstrated by the peak in the 20-40 and 40-60m distance categories (Fig. 6).

The detection function is shown in Fig. 5. A chi-squared test showed it to be an excellent fit with ($\chi^2 = 3.83$, df = 10, $P=0.99$). This gave a density estimate (±SE) of 1.585 ± 0.219 harbour porpoises km$^{-2}$ with a CV of 0.14. The abundance estimate was 1826 ± 252 with a 95% Confidence Interval of 1389 – 2400 porpoises.

![Figure 6a. Detection function for harbour porpoise sightings in Block A using the day as the sample](image1)

![Figure 6b. Detection function for harbour porpoise sightings in Block A using track-line as the sample](image2)
When using the track-line as the sample there was no difference in the overall density estimate though a big increase in the coefficient of variation from 0.14 to 0.32 and the standard error of the density estimate. The detection function was still an excellent fit ($X^2 = 3.83$, df = 10, $P=0.99$). Encounter rate attributed to 81.4% of the variability with detection probability (12.1%) and cluster size (6.6%) accounting for the remaining 19%. This gave a density estimate ($\pm SE$) of 1.541 ± 0.493 harbour porpoises km$^{-2}$ with a CV of 0.32. The abundance estimate was 1776 ± 569 with a 95% Confidence Interval of 917 – 3440 porpoises.

Southern Irish Sea (Block B)

A survey of the southern Irish Sea (Block B) was carried out on 2 August 2011. Sea-state ≤3 was recorded during 79.2% of effort and sea-state ≤2 for just over one-half (53%) of the survey (Fig. 7). The survey was terminated about one-quarter way through the final transect as the sea-state had increased to sea-state 5. This was due to a change in the tide resulting in poor sea-state as the wind direction was in the opposite direction and thus against the tide.

![Figure 7. Sea state conditions for the survey of the Southern Irish Sea (Block B) on 2 August](image)

Species Diversity

Species diversity was very low, with only one species of cetacean (i.e. harbour porpoise) present although two species of seal (grey and common seal) were also recorded.

Table 6. Relative abundance of cetaceans and seals in Block B

<table>
<thead>
<tr>
<th>Species</th>
<th>Sightings</th>
<th>Individuals</th>
<th>Sightings km$^{-1}$</th>
<th>Numbers km$^{-1}$</th>
<th>Sightings hr$^{-1}$</th>
<th>Numbers hr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour Porpoise</td>
<td>14</td>
<td>22</td>
<td>0.101</td>
<td>0.159</td>
<td>1.91</td>
<td>3.00</td>
</tr>
<tr>
<td>Grey seal</td>
<td>2</td>
<td>2</td>
<td>0.014</td>
<td>0.014</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Common Seal</td>
<td>1</td>
<td>1</td>
<td>0.007</td>
<td>0.007</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Relative abundance

Sea-state was ≥3 for 115 minutes or 38km. These data were omitted when calculating sighting rates and relative abundance. Harbour porpoise was the most abundant species in Block B with a sightings rate of 0.101 sightings per km or 1.91 sightings per hour of survey effort. Relative abundance of harbour porpoise was estimated at 0.159 porpoise per km or 3.0 porpoises per hour of survey (Table 6). This was an order of magnitude greater than the relative abundance of grey and common seal in the same block (Table 6).

The distribution of sightings along the track lines are shown in Figure 8. All sightings of harbour porpoise were clustered towards the centre of the survey block.

Figure 8a. Relative abundance of harbour porpoise in the southern Irish Sea (Block B) on the 2 August
Of the total of 22 individual harbour porpoise recorded 17 were considered adults and four juveniles with one calf. Thus the adult to sub-adult ratio was 3.4:1 or 23% of the population was considered sub-adults. The adult to calf ratio was 17:1 or 6%.
Acoustic detections

There were a total of 11 acoustic events recorded in Block B. When using the 10-minute sampling rule to separate encounters, this equated to 9 acoustic encounters, comprising exclusively of harbour porpoise detections (Fig. 9). Five acoustic detections were recorded without a corresponding visual record.

Figure 9. Acoustic survey effort (grey line) and acoustic detections of harbour porpoise on 2 August in Block B.
Discussion

This survey was the second such effort targeting regional inshore waters off the Irish coast. Results from the present survey provided a good return for effort; including estimation of sighting rates and relative abundances for two cetacean species and absolute abundance estimates for harbour porpoise.

Visual and Acoustic Detections

Results from the visual surveys showed there was some consistency in species encountered at both sites, with harbour porpoise by far the most frequently recorded species. There was however a large difference in the sighting rate and relative abundance between the two blocks. The abundance of harbour porpoises in the southern Irish Sea appears to be much lower compared to the northern Irish Sea. A second survey was carried out by the IWDG in the southern Irish Sea on 11 July 2011 (see Appendix) which provided consistent results to that carried out in the same area on 2 August.

Sighting rates of harbour porpoise, and thus local densities, were notably higher adjacent to Rockabill and Lambay Islands in the northern Irish Sea and in the southern part of Block A. This was consistent with Berrow et al. (2008) who recorded high densities during smaller scale harbour porpoise surveys in the same area. This suggests that this could be a good habitat for harbour porpoises.

The data from passive acoustic monitoring (PAM) is limited when compared to visual data. During both surveys a total of 65 harbour porpoise sightings were recorded, while only 17 acoustic detections were logged. Of these only 10 sightings were simultaneously logged acoustically. Therefore, it is clear that relying on PAM data to assess or estimate harbour porpoise activity in an area in the absence of visual methods is not acceptable. PAM provides no information on density and results would lead to an area being overlooked when assessing importance, which would have serious implication where assessment relying on this method alone. Harbour porpoise clicks have a narrow bandwidth centered around 130 kHz, with little energy below 100 kHz (Verboom and Kastelein 1997) and therefore these clicks rapidly attenuate due to their high frequency nature. Harbour porpoise are known to avoid vessels and it is likely many porpoise were moving away from the vessel and thus there echolocation clicks would be traveling in the wrong direction to be detected by the towed hydrophone. The hydrophone was towed 200m astern of the survey vessel and with an estimated detection distance of around 200m, at the limit of its detection range. During the present survey there were 12 acoustic detections with simultaneous visual detections and 12 acoustic detections with no corresponding visual detections. This demonstrates the usefulness of simultaneous PAM with visual surveying but it should not be relied upon alone as it may not truly reflect the species present in an area and will add no value to density estimates.

However the lack of dolphin (whistle) detections suggests they are either not present or uncommon in the survey blocks during the summer. One common dolphin sighting was made in July 2011 during a similar survey of this area (Appendix I) which coincided with a number of whistle detections. These whistles were detected when the dolphins were estimated to be at least 2km from the vessel. This suggests that if dolphins were present elsewhere we would have detected them acoustically if not visually. The lack of dolphin acoustic detections suggests the visual data were accurate and dolphin sightings in the survey blocks were infrequent.

While there is merit to carrying out both visual and acoustic surveying for cetaceans, the results here demonstrate that when two techniques are used simultaneously a more robust record of species presence and abundance is achieved.
Sighting rate and Relative Abundance

Information on relative abundance and density estimates are useful for comparing cetacean occurrence within and between survey blocks. Broad-scale sighting surveys designed to estimate the abundance of harbour porpoise in Ireland are limited (O’Brien et al. 2009). Reid et al. (2003) showed harbour porpoise to be widespread and abundant in the Irish Sea and off southwest Ireland as far north as Galway Bay but largely absent from the northwest coast. Pollock et al. (1997) reported sighting rates of 0.01-0.09 harbour porpoise per hour off the east coast of Ireland during seabird surveys on platforms of opportunity. Sighting rates for harbour porpoise within the Irish Sea were elevated in the northern half of the Irish Sea with rates of 2.5-10 counts per hour (Baines and Evans, 2009). This elevated abundance may be associated with a seasonal front known to occur regularly in this area.

Results from the present survey can be directly compared with results from Ryan et al. (2010) who used the same survey methodology and surveyed the same sized blocks using a standardised survey design provided by NPWS. Relative abundance and sighting rates are presented in Table 7. Sighting rates of harbour porpoise in the Northern Irish Sea were higher up to three times higher than any other site surveyed and an order of magnitude higher than that recorded from sites along the western seaboard. Relative abundance was also higher in the northern Irish Sea. The sighting rate in the southern Irish Sea on 2 August was very similar to that recorded by the IWDG on 11 July 2011.

The proportion of calves in block A and block B was consistent at around 6% which was very similar to that reported in 2008 in the same area (6-8%) and that reported elsewhere in Ireland (Berrow et al. 2008a).

Table 7. Sighting rates and relative abundances of harbour porpoises recorded in Irish inshore waters during comparable surveys in the summer of 2010 and 2011.

<table>
<thead>
<tr>
<th>Location</th>
<th>Month</th>
<th>Sightings km⁻¹</th>
<th>Numbers km⁻¹</th>
<th>Sightings hr⁻¹</th>
<th>Numbers hr⁻¹</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Irish Sea</td>
<td>July 2011</td>
<td>0.29</td>
<td>0.50</td>
<td>5.24</td>
<td>9.15</td>
<td>This study</td>
</tr>
<tr>
<td>Southern Irish Sea</td>
<td>August 2011</td>
<td>0.10</td>
<td>0.16</td>
<td>1.91</td>
<td>3.00</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>July 2011</td>
<td>0.09</td>
<td>0.09</td>
<td>1.41</td>
<td>1.51</td>
<td>IWDG unpub. data</td>
</tr>
<tr>
<td>Northwest</td>
<td>August 2010</td>
<td>0.02</td>
<td>0.02</td>
<td>0.23</td>
<td>0.23</td>
<td>Ryan et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>July 2011</td>
<td>0.01</td>
<td>0.01</td>
<td>0.20</td>
<td>0.20</td>
<td>Berrow et al. (2011)</td>
</tr>
<tr>
<td>West</td>
<td>October 2010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Ryan et al. (2010)</td>
</tr>
<tr>
<td>Southwest</td>
<td>September 2010</td>
<td>0.06</td>
<td>0.03</td>
<td>0.56</td>
<td>1.11</td>
<td>Ryan et al. (2010)</td>
</tr>
</tbody>
</table>

Density Estimates

Statistical inference using distance sampling rests on the validity of several assumptions (Buckland et al., 2001). These include that objects are spatially distributed according to some stochastic process. If transect lines are randomly placed within the study area we can safely assume that objects are uniformly distributed with respect to the perpendicular distance from the line in any given direction. Another assumption is that objects on the track-line are always detected (g(0)=1) and are detected at their initial location prior to any movement in response to the observer. Finally, if objects on or near to the track-line are missed the density estimate will be biased low.
From the concurrently acoustic and visual data collected during the present survey there were and 12 acoustic detections with no corresponding visual detections. Some harbour porpoise were therefore missed by observers even in good sea conditions, showing that g(0) did not equal 1. Typically for surveys of harbour porpoise g(0)= 0.4 or 0.5, i.e. only one-half of the animals on the track-line are detected (Hammond et al. 2002). This is likely to be much less for common dolphins where g(0) is closer to 1. (Hammond et al. 2010) However harbour porpoise often show movement away the vessel and thus density and abundance is under-estimated if this movement occurs prior to detection (Hammond et al. 2002). There was no evidence of this during the survey in block A. Without a double-platform methodology it is not possible to accurately determine the numbers missed on the track-line. However these sources of variability were constant between survey blocks allowing comparisons between these blocks and were consistent with previous studies in Ireland and thus direct comparisons are possible.

The density estimates from the present survey and similar surveys carried out in 2008 by Berrow et al. (2008a; 2008b; 2009) are shown in Table 8. The survey methodologies differed however track-lines were placed systematically through the survey areas, which were smaller and more coastal than surveyed in 2010 and 2011. Nevertheless, broad-scale comparisons are relevant as the data analysis was very similar.

The density estimate in the northern Irish Sea in the present survey (1.58) was similar to that recorded in the two candidate SACs off the southwest coast (Blasket Islands; 1.33-1.65 porpoise per km\(^2\) and Roaringwater Bay; 1.24 porpoise per km\(^2\)) in 2007 and 2008. The highest density of harbour porpoises at any site surveyed to date in Ireland was from north County Dublin, where Berrow et al. (2008a) obtained estimates ranging from 0.54 to 6.93 porpoise per km\(^2\) during each survey with a mean of 2.03 porpoise per km\(^2\). Most of the sightings in the present survey were off north County Dublin and east of Dublin Bay which supports the findings of these previous studies and confirms that waters off County Dublin are important for harbour porpoises.

A density estimate of 0.34 (CV=0.35) harbour porpoise per km\(^2\) was reported for the Irish Sea during July 2005 which was greater than that reported (0.28 harbour porpoise per km\(^2\)) during the same survey for coastal areas outside the Irish Sea supporting the finding that densities in the Irish Sea generally are elevated.

Table 8. Density estimates for harbour porpoises in Irish coastal and inshore waters.

<table>
<thead>
<tr>
<th>Site</th>
<th>Month and Year</th>
<th>Density (km(^2))</th>
<th>CV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Irish Sea</td>
<td>July, 2011</td>
<td>1.58</td>
<td>0.14</td>
<td>This survey</td>
</tr>
<tr>
<td>North County Dublin</td>
<td>July-September, 2008</td>
<td>2.03</td>
<td>0.23</td>
<td>Berrow et al. (2008a)</td>
</tr>
<tr>
<td>Dublin Bay</td>
<td>July-September, 2008</td>
<td>1.19</td>
<td>0.24</td>
<td>Berrow et al. (2008a)</td>
</tr>
<tr>
<td>Blasket Islands cSAC</td>
<td>July-September, 2007</td>
<td>1.65</td>
<td>0.28</td>
<td>Berrow et al. (2009)</td>
</tr>
<tr>
<td>Roaringwater Bay cSAC</td>
<td>July-September, 2008</td>
<td>1.24</td>
<td>0.27</td>
<td>Berrow et al. (2008a)</td>
</tr>
</tbody>
</table>

The results from the present survey have further shown that with a good survey methodology and favourable weather conditions a high sighting rate of harbour porpoises, can be achieved. This not only enable species occurrence data to be collected from an area but also quantitative data such as sighting rates, relative abundance and even density and absolute abundance estimates. The latter are the most useful when comparing within and between sites and the estimate calculated for the northern Irish Sea...
was considered robust with a low CV (0.14). Although a double-platform would be able to correct for those sightings not detected on the track line and to enable direct comparison with broad-scale surveys (e.g. SCANS, SIAR, CODA), the increased costs associated with a larger vessel and additional personnel may be restrictive. Providing the methodology is consistent single platform surveys can be used to compare sites and, over time, may be able to assess trends.

This survey has shown there are similarities in species occurrence between the northern and southern Irish Sea but there are large differences in abundance. Greatest densities of harbour porpoise occurred during summer 2011 in the northern sector especially off north County Dublin and east of Dublin Bay.

Acknowledgements

We would like to thank Chris Hanniveg of Sure Engineering for the use of their boat Rocinante and skipper Oliver Kirwin of Clogherhead who was very tolerant of late changes to schedules and early starts. This survey was funded by the Department of Arts, Heritage and the Gaeltacht and we thank Dr Oliver Ó Cadhla and Dr Eamonn Kelly for their support during this project.
References

Appendix I: Results of a survey of the southern Irish Sea carried out by the IWDG on 11 July 2011

A survey of the southern Irish Sea was carried out on 11 July 2011. Sea-state of ≤3 was recorded on 100% of survey effort but 61.2% of effort was in sea-state 2, which can still be difficult to observe harbour porpoise.

Species diversity was low with only three species of cetacean (harbour porpoise, minke whale and common dolphin) recorded and two species of seal (grey and common seal). Harbour porpoise were the most abundant species in Block B with a sighting rate of 0.087 sightings per km or 1.41 sightings per hour of survey effort. Relative abundance of harbor porpoise was estimated at 0.090 porpoise per km or 1.51 porpoise per hour of survey. This was an order of magnitude greater than the relative abundance of common dolphin, minke whale or grey and common seal in the same area.

Relative abundance of cetaceans and seals on 11 July 2011

<table>
<thead>
<tr>
<th></th>
<th>Sightings</th>
<th>Individuals</th>
<th>Sightings km(^{-1})</th>
<th>Numbers km(^{-1})</th>
<th>Sightings hr(^{-1})</th>
<th>Numbers hr(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour Porpoise</td>
<td>14</td>
<td>15</td>
<td>0.087</td>
<td>0.090</td>
<td>1.41</td>
<td>1.51</td>
</tr>
<tr>
<td>Common dolphin</td>
<td>1</td>
<td>20</td>
<td>0.006</td>
<td>0.120</td>
<td>0.10</td>
<td>2.01</td>
</tr>
<tr>
<td>Minke Whale</td>
<td>1</td>
<td>1</td>
<td>0.006</td>
<td>0.006</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Grey seal</td>
<td>1</td>
<td>1</td>
<td>0.006</td>
<td>0.006</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Most sightings of harbor porpoise were towards the south of the survey block but occurred throughout the survey area on 11 July while there were single sightings of minke whale and common dolphin.

There were a total of 11 acoustic events recorded in on 11 July. When using the 10-minute sampling rule to separate encounters, this equated to seven acoustic encounters, comprising of four harbour porpoise encounters, one unidentified dolphin species and one common dolphins encounters. Three of the seven acoustic events did not have corresponding visual detections on day one.
Figure 8. Relative abundance of a. harbour porpoise and b. other species in the southern Irish Sea on 11 July.

Acoustic survey effort (grey line) and acoustic detections of harbour porpoise, common dolphin and unidentified dolphin species on 11 July.
Appendix I

Criteria used for species assignment of acoustic detections

<table>
<thead>
<tr>
<th>Vernacular</th>
<th>Signal Type</th>
<th>Frequency Range (kHz)</th>
<th>Frequency at Maximum Energy (kHz)</th>
<th>Source Level (dB re 1 µPa)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour porpoise</td>
<td>Clicks</td>
<td>2 - 140</td>
<td>110 - 150</td>
<td>100 - 205</td>
<td>Busnel and Dziedic (1966), Whitlow et al. (1999)</td>
</tr>
<tr>
<td>Common dolphin</td>
<td>Whistles</td>
<td>2 - 23.51</td>
<td>0.5 - 18</td>
<td>-</td>
<td>Busnel and Dziedic (1966), Caldwell and Caldwell (1968), Ansmann et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Clicks</td>
<td>0.2 - 150</td>
<td>30 - 67</td>
<td>-</td>
<td>Busnel and Dziedic (1966)</td>
</tr>
</tbody>
</table>
Inshore boat-based surveys for cetaceans: Addendum

Simon Berrow1,2, Joanne O’Brien2, Conor Ryan1,2, Enda McKeogh2, Sarah Blennerhassett1 and Ian O’Connor2

1. Irish Whale and Dolphin Group, Merchants Quay, Kilrush, County Clare
2. Marine Biodiversity Research Group, Galway-Mayo Institute of Technology, Dublin Road, Galway

Supplementary report to the National Parks and Wildlife Service,
Department of Arts, Heritage and the Gaeltacht

October 2011
Inshore boat-based surveys for cetaceans: Addendum

Survey team:

Simon Berrow (Project Manager and Primary Observer)
Joanne O’Brien (Primary Observer and Passive Acoustics)
Conor Ryan (Primary Observer)
Enda McKeogh (Passive Acoustics and LOGGER)
Sarah Blennerhassett (LOGGER)
Ian O’Connor (GIS support)

Cover image: North Mayo coastline in sea-state 1, photographed during the northwest inshore survey © DAHG
Inshore boat-based surveys for cetaceans: Addendum

Summary

A single platform line transect survey using distance sampling was carried out off the northwest coast on 13 July 2011. This was a repeat survey of that carried out in 2010 by Ryan et al. (2010) as conditions in 2010 were not suitable for surveying throughout the survey period. Sea conditions were very good during the present survey with 48% of survey effort carried out in sea-state 2 and 40.4% in ≤1.

A total of eight marine mammal sightings were recorded, comprising 13 individuals of five species. These included two harbour porpoise sightings, one sighting of a group of Risso’s dolphins, a single minke whale, and both common and grey seals. Sightings of cetaceans and seals were generally made towards the centre of the survey block offshore between Downpatrick and Benwee headlands, with seal sightings slightly more spread out.

Cetacean relative abundance was low, despite excellent survey conditions. Given the small number of sightings the species diversity was relatively high. The sighting of a group of Risso’s dolphins was noteworthy but was anticipated as although their distribution is patchy in Ireland, regular sightings occur off the northwest coast and in Broadhaven Bay during the summer, 30km to the south of the survey area.

Harbour porpoise occurrence recorded off the northwest coast during the survey was very similar to that recorded during a similar survey in 2010 despite less favourable sea conditions during the former survey. Passive Acoustic Monitoring (PAM) was also carried out during the survey using a towed hydrophone array. A total of 198km was surveyed with only a single acoustic detection of a group of Risso’s dolphins. This acoustic detection was simultaneous to the visual sighting and therefore on this occasion PAM added no additional detections to the overall survey.

These surveys are aimed at filling gaps in coverage to obtain a better understanding of the distribution and abundance of cetaceans in Irish waters. They can also provide good baselines for monitoring purposes and may enable the identification of areas with a higher relative abundance of cetaceans and potentially important habitats for these species.
Introduction

Waters within the Irish Exclusive Economic Zone (EEZ) are known to be some of the most important in Europe for cetaceans (Berrow et al. 2001). While there has been a steady increase in cetacean research in Ireland, dedicated surveys to estimate the abundance of cetaceans in a defined area are limited to date and are presently insufficient to detect population trends (O’Brien et al. 2009a).

Since 1994 there has been a concerted effort to map the distribution and relative abundance of all cetacean species occurring within the Irish EEZ largely using platforms of opportunity. These surveys including initiatives such as European Seabirds at Sea (ESAS) research, ISCOPE and PReCAST have attempted to include seasonal coverage, especially of offshore waters (Pollock et al. 1997; Ó Cadhla et al. 2004; Wall et al. 2006; 2011; Berrow et al. 2006; 2010).

The first dedicated double-platform cetacean survey in Ireland was SCANS-I (Small Cetacean Abundance in the North Sea) carried out during summer of 1994, but it only covered the Celtic Shelf region of the Irish EEZ (Hammond et al. 2002). During 2000, the SIAR survey covered both inshore and offshore waters of the western seaboard using a double-platform visual survey technique from which the abundance of common and white-sided dolphins was estimated (Ó Cadhla et al. 2004). In summer 2005, a second SCANS survey (SCANS-II, 2008) was carried out which this time included all Irish continental shelf waters and the Irish Sea. Abundance estimates for a variety of species including harbour porpoise, common, bottlenose and white-beaked dolphin and minke whale were derived (SCANS-II, 2008). In 2007, a survey of species in European Atlantic waters beyond the continental shelf (CODA) was carried out offshore and provided abundance estimates for common, striped and bottlenose dolphins and long-finned pilot, sperm, minke, fin whales and beaked whales (Hammond et al. 2010).

Small scale dedicated surveys were carried out at eight survey locations since 2007 in coastal waters and bays using a single-platform line transect technique to estimate the abundance of harbour porpoises (Berrow et al., 2008a; 2008b; 2009; Ryan et al. 2010). Land-based surveys through ISCOPE attempted to record and monitor cetacean’s inshore (Berrow et al. 2010). However, there are still many gaps in coverage (see Wall, 2010).

The Irish Whale and Dolphin Group (IWDG) and the Galway-Mayo Institute of Technology (GMIT) were contracted to carry out a concurrent visual and passive acoustic survey off the northwest coast. This was a repeat survey of that carried out in 2010 but in more favourable sea conditions as conditions in 2010 were at sea-state <3 for only one-third of survey time which was not favourable for cetacean surveys and outside that contracted by the National Parks and Wildlife Service.

Objectives

As in 2010 the objectives of the present survey were to:

(a) Determine the occurrence of cetacean species and other marine species of interest;
(b) Determine species relative abundance (no. of sightings/individuals per unit effort);
(c) Determine cetacean species abundance, where possible (i.e. population/density estimation).
Methods

Survey blocks

The inshore survey block off the northwest coast is shown in Figure 1. The block was 336 nm² (1152 km²) in surface area with a perimeter of 48nm by 7nm and was located between 6nm and 12nm from shore off the north coast of Counties Mayo and Sligo.

![Figure 1. Map of Ireland showing the location of the northwest survey block.](image1)

Survey platform

The vessel *MV Smoothhound* was chartered for the survey. *MV Smoothhound* is a 11m Vigilante with flying bridge and capable of speeds up to 25kts. It was chartered by IWDG in 2008 (Berrow *et al.* 2008) and 2010 (Ryan *et al.* 2010) and provided a good platform height above sea level (i.e., 3m) and the capability of transiting fast to the start of the survey area.

![Fig. 1 MV Smoothhound. Note: flying bridge on wheelhouse](image2)
Survey methodology

A conventional single platform line-transect survey was carried out along pre-determined track lines supplied by the NPWS. The same track lines as used by Ryan et al. (2010) were surveyed.

During survey effort, the vessel travelled at a speed of 12-16 km hr$^{-1}$ (8-10 knots), which was 2-3 times the average speed of the species most likely to be encountered (e.g., common dolphin, minke whale, bottlenose dolphin, harbour porpoise) as recommended by Dawson et al. (2008). Two primary observers were positioned on the flying bridge. Primary observers were experienced in cetacean visual surveys and species identification in Irish waters. Observers watched with naked eye from dead ahead to 90° to port or starboard depending on which side of the vessel they were stationed. Opticron 10x50 marine binoculars with reticle eyepieces were used to confirm species identification and assist in distance estimation. In addition, sightings of seals and any other marine megafauna (e.g., basking shark, sunfish) were also recorded.

During the transect the position of the survey vessel was tracked continuously through a GPS receiver fed directly into a laptop while survey effort, including environmental conditions (sea-state, wind strength and direction, glare etc.) were recorded directly onto LOGGER software (©IFAW) every 15 minutes.

When a sighting was made the position of the vessel was recorded immediately and the angle of the sighting from the track of the vessel and the radial distance of the sighting from the vessel were recorded. These data were communicated to the recorder in the wheelhouse via two-way radio. The angle was recorded to the nearest degree via an angle board attached to the vessel immediately in front of each observer. Accurate distance estimation is essential for distance sampling. Distance sticks were made for observers using the Heinemann Equation (Insert reference) which were used to aid distance estimation.

Relative abundance

Sightings rate was calculated as the number of sightings per km travelled or hour of survey effort, while relative abundance was calculated as the number of animals recorded per km of transect or per hour of coverage. Both measures were restricted to observations made in sea state ≤3.

Passive Acoustic Monitoring

Passive Acoustic Monitoring (PAM) was carried out using a towed hydrophone at a distance approximately 200m astern of the survey vessel and at a depth of c.2 to 5m beneath the sea surface.

The towed hydrophone array consisted of a 200m-long cable containing two high frequency hydrophone elements (HP-03) situated 25cm apart in a fluid filled tube at the end of the cable. The hydrophone was connected to a MAGREC HP-27 buffer-box which was connected to a National Instrument DAQ-6255 USB soundcard run through a laptop computer. The track-line of the acoustic survey effort was recorded using an external GPS receiver, which provides NMEA data to PAMGUARD software (version 1.6.01 Beta). A dedicated acoustic observer continuously monitored the incoming audio stream both visually (audiospectrogram) and aurally using PAMGUARD. Acoustic detections of cetacean vocalisations (both clicks and whistles) were noted, described and their time and GPS locations recorded. Raw recordings were saved continuously as .WAV files and backed-up daily on an external hard-drive.

An acoustic encounter was considered a separate encounter, when a silent period of 10 minutes was recorded between acoustic detections. This followed the method used by Aguilar de Soto et al. (2004) and the protocol established under PReCAST (Pierini, 2010). Harbour porpoise echolocation clicks are characterized as being narrow-band, high frequency between 110 and 150kHz, with an average click duration of 2μs and a mean source level of 150dB. In comparison, dolphin clicks are characterized as being broadband ranging in frequency from 200Hz and 150kHz.
Maps were created using Irish Grid (TM65_Irish Grid) with ArcView 3.2 and using SeaTurtle.org Maptool© while design coordinates for the survey areas were obtained from NPWS. Data related to transects, effort, location of visual and acoustic detections, abundance and density estimates were stored in a single MS Access database, which was queried from within the GIS to produce maps.

Results

The entire survey block was surveyed on 13 July 2011 in sea-state ≤3, as per NPWS specifications (Fig. 2). Nearly half (48%) of all survey effort was carried out in sea-state 2 and 40.4% in ≤1, with just under an hour (52 minutes: 8.5% of effort) in sea-state 0 (Table 1). The visibility was 15-20km or greater, with no precipitation and swell height was <1m for the duration of the survey. A total transect length of 173km was surveyed.

![Bar chart showing total effort by sea-state](chart.png)

Figure 2. Sea state conditions for the survey of the northwest survey block.

A total of eight sightings comprising 13 individuals of five marine mammal species were recorded (Table 1). These include two harbour porpoise sightings, one sighting of a group of Risso’s dolphins, a single minke whale, and both common and grey seals (Table 2). The track-line was broken at the end of line 5 when a group of Risso’s dolphins was observed in an attempt to obtain photo-identification data, however no images suitable for photo-identification were obtained.

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of track lines completed</th>
<th>Total proportion of survey in sea-state ≤3</th>
<th>Number of sightings</th>
<th>Total No. of mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 July, 2011</td>
<td>12</td>
<td>100%</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

Sightings of cetaceans and seals were generally made towards the centre of the survey block offshore between Downpatrick and Benwee headlands (Fig. 3).
Figure 3. Location of cetacean and seal sightings made during the survey in July 2011.
(Note: GPS failed for a period on track-line 9 but environmental conditions were recorded throughout)
Table 2. Species present in the northwest survey block during 2011

<table>
<thead>
<tr>
<th>Species</th>
<th>Sightings</th>
<th>Individuals</th>
<th>Mean Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour porpoise</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Minke whale</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Grey seal</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Common seal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Relative abundance

Cetacean relative abundance recorded during the survey was low despite excellent survey conditions, with only four sightings of a total of nine individuals. In addition there were four sighting of seals of two species. Given the small number of sightings the species diversity was quite high. Sighting rates ranged from 0.005 sightings per km of transect surveyed for Risso’s dolphin, minke whale and common seal to 0.015 sightings per km for grey seal. Risso’s dolphin was the most numerous species with 0.30 individuals per km or 0.60 per hour of survey effort.

Table 4. Relative abundance of cetaceans and seals in the northwest survey block.

<table>
<thead>
<tr>
<th></th>
<th>No. of sightings</th>
<th>No. of individuals</th>
<th>Sightings per km</th>
<th>Numbers per km</th>
<th>Sightings per hour</th>
<th>Numbers per hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour porpoise</td>
<td>2</td>
<td>2</td>
<td>0.010</td>
<td>0.010</td>
<td>0.197</td>
<td>0.197</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>1</td>
<td>6</td>
<td>0.005</td>
<td>0.030</td>
<td>0.098</td>
<td>0.589</td>
</tr>
<tr>
<td>Minke whale</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.098</td>
<td>0.098</td>
</tr>
<tr>
<td>Grey seal</td>
<td>3</td>
<td>3</td>
<td>0.015</td>
<td>0.015</td>
<td>0.294</td>
<td>0.294</td>
</tr>
<tr>
<td>Common seal</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.098</td>
<td>0.098</td>
</tr>
</tbody>
</table>

No absolute abundance estimates could be calculated from the present survey as the number of sightings were too few.

Acoustic Detections

Only a single acoustic event was logged during the survey, and this was of the Risso’s dolphin group for which we broke track to photograph. The duration of the encounter exceeded 8 minutes, mainly because we were following the group. This group was sighted visually before any acoustic detections were logged, and were within 800m of the hydrophone before clicks and whistles were logged on the hydrophone. The visual sightings of harbour porpoise were not logged acoustically.

Where concurrent visual and acoustic (clicks and whistles) observations were made of dolphins, species identification was more precise as was the case for the Rissos dolphins. This was the only acoustic event
recorded over the survey duration (198km, Fig. 4), despite two visual sightings of harbour porpoise being recorded. A summary of acoustic detections is presented in Table 5.

Figure 4. Acoustic survey track (solid line) and the location of a Risso’s dolphin acoustic and visual detection during the survey

Table 5: Summary of acoustic detections within the survey block

<table>
<thead>
<tr>
<th>Survey block</th>
<th>Date</th>
<th>Clicks</th>
<th>Whistles</th>
<th>Total detections</th>
<th>Range of Duration (secs)</th>
<th>Mean encounter duration (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>13/07/2011</td>
<td>Y</td>
<td>Y</td>
<td>1</td>
<td>502</td>
<td>502</td>
</tr>
</tbody>
</table>
Discussion

This repeat survey in 2011 was carried out in very suitable sea conditions, however the number of sightings was low but similar to that recorded in 2010 by Ryan et al. (2010). Only eight marine mammal sightings were recorded but this involved five different species, suggesting species diversity was quite high relative to sightings rate.

Harbour porpoise and minke whale are widespread in coastal waters of Ireland during the summer (Berrow et al. 2010) and may have been expected to occur in this area but only three sightings of single individuals were recorded. The sighting of a group of Risso’s dolphins was noteworthy but was anticipated. Although the distribution of this species in Ireland is patchy (Reid et al. 2003; Berrow et al. 2010), regular sightings occur off the southeast (Saltee Islands), southwest (especially around the Blasket Islands) and off the northwest as far east as Donegal Bay. Risso’s dolphins have been regularly reported in Broadhaven Bay in the summer in groups of 1-10 individuals (Visser et al. 2010). The sighting in the present survey was only around 30km northwest of Broadhaven Bay.

We may have expected to observe bottlenose dolphins (Tursiops truncatus) during the survey. A sighting of a group of bottlenose dolphins to the east of the survey area, in Donegal Bay was reported during the present survey but these animals were not observed either during the survey or while on transit to/from the survey area. Bottlenose dolphins are known to use coastal areas off Counties Mayo and Sligo (Berrow 2008; Oudejans et al., 2008; Ó Cadhla et al., 2003; Visser et al., 2010) and some may be part of one or more highly mobile groups, several individuals of which have been widely recorded around the Irish coast (O’Brien et al. 2009b).

Relative Abundance

Data on the relative abundance of small cetaceans recorded during similar surveys elsewhere in Ireland are comparatively limited but broad comparisons can be made between this survey and similar surveys carried out during 2010 and 2011.

Harbour porpoise abundance off the northwest during 2011 was very similar to that recorded in 2010 by Ryan et al. (2010) despite less favourable sea conditions during 2010. The abundance was less than that recorded off the southwest in 2010 and much less than that recorded in the Irish Sea during 2011 (Berrow et al. 2011). The low sighting rates recorded during surveys off the northwest coast during 2010 and 2011, especially during 2011, when sea conditions were very favourable, suggest harbour porpoise may not be as abundant in this area as at other sites in Irish coastal waters.

Minke whale relative abundance off the northwest was similar to that recorded in the southern Irish Sea during 2011 (Berrow et al. 2011) but only half that recorded off the southwest during 2010 and much less than that recorded in the Northern Irish Sea in 2011 (Ryan et al. 2010; Berrow et al. 2011).

Visual and Acoustic Detections

Although PAM on this occasion did not provide additional detections to the overall survey it does suggest that no odontocetes, especially dolphins, were missed during the survey.

The low sighting rate resulted in low relative abundance suggesting that cetaceans are not plentiful in this area although given the low number of sightings the species diversity was relatively high. There has been considerable survey effort in Broadhaven Bay and adjacent waters in recent years in connection with the Corrib Gas Project. The results of these surveys suggest a high species diversity in the area (e.g., Oudejans et al., 2008; Visser et al. 2010) though it is difficult to compare relative abundance between the studies due to the different methodologies and analysis carried out.
These surveys can provide good baselines for monitoring purposes with future repetition of survey effort, and may enable the identification of areas with a higher relative abundance of cetaceans and potentially important habitats for these species.

Clearly this is a long-term commitment but the present surveys are an important first step in fulfilling this objective.

Acknowledgements

We would like to thank the Richard Timony, skipper of MV Smoothound for his dedication to ensure this survey was carried out in suitable sea conditions. This survey was funded by the Department of Arts, Heritage and the Gaeltacht and we thank Dr Oliver Ó Cadhla and Dr Eamonn Kelly for their support during this project.
References

