#### National Parks & Wildlife Service # Bellanagare Bog SAC (site code 000592) ## Conservation objectives supporting document - raised bog habitats Version 1 November 2015 #### Contents | 1 | INTRO | DUCTION | 2 | |---|------------------|----------------------------------------------------------------------------|-----| | | 1.1 R | AISED BOGS | 2 | | | 1.1.1 | Raised Bogs Microtopography | 3 | | | 1.1.2 | Typical Flora of Irish Raised Bogs | 5 | | | 1.1.3 | Typical Fauna of Irish Raised Bogs | 6 | | | 1.2 H | ABITATS DIRECTIVE RAISED BOG HABITATS IN IRELAND | 9 | | | 1.2.1 | Restoration of Active Raised Bog in Ireland | 10 | | | 1.3 B | ELLANAGARE BOG SAC | | | | 1.3.1 | Flora of Bellanagare Bog | 11 | | | 1.3.2 | Fauna of Bellanagare Bog | 13 | | 2 | CONSE | RVATION OBJECTIVES | 13 | | | 2.1 A | REA | 13 | | | 2.2 R | ANGE | 14 | | | 2.3 S1 | RUCTURE AND FUNCTIONS | 15 | | | 2.3.1 | High bog area | 15 | | | 2.3.2 | Hydrological regime: water levels | 15 | | | 2.3.3 | Hydrological regime: flow patterns | 17 | | | 2.3.4 | Transitional areas between high bog and surrounding mineral soils (include | des | | | cutove | r areas) | | | | 2.3.5 | Vegetation quality: central ecotope, active flush, soaks, bog woodland | 18 | | | 2.3.6 | Vegetation quality: microtopographical features | 19 | | | 2.3.7 | Vegetation quality: bog moss (Sphagnum) species | 19 | | | 2.3.8 | Typical ARB species: flora | 20 | | | 2.3.9 | Typical ARB species: fauna | | | | 2.3.10 | Elements of local distinctiveness | | | | 2.3.1 | | | | | 2.3.1 | | | | | 2.3.10<br>2.3.11 | | | | | | Negative physical indicators | | | | 2.3.12 | Vegetation composition: native negative indicator species | | | | 2.3.13 | Vegetation composition: non-native invasive species | | | | 2.3.14 | Air quality: nitrogen deposition | | | | 2.3.15 | Water quality | 23 | | 3 | REFERE | NCES | 25 | - Map 1: Extent of potential active raised bog on Bellanagare Bog. - Map 2: Distribution of raised bog ecotopes on Bellanagare Bog. - Map 3: Digital elevation model and drainage patterns at Bellanagare Bog. #### 1 Introduction This document presents a summary of the background information that has informed the process of setting the Site-Specific Conservation Objective in relation to the priority Annex I habitat 'active raised bog' (habitat code 7110) (hereafter referred to as Active Raised Bog (ARB)), for which Bellanagare Bog Special Area of Conservation (SAC) has been designated. Bellanagare Bog SAC is also designated for two other related Annex I habitats, namely; 'degraded raised bogs still capable of natural regeneration' (habitat code 7120) (hereafter referred to as Degraded Raised Bog (DRB)) and 'depressions on peat substrates of the Rhynchosporion' (habitat code 7150). Based on the close ecological relationship between these three habitats types, it is not necessary to set specific Conservation Objectives for all three habitats individually. It is considered that should favourable conservation condition for ARB be achieved on the site, then, as a consequence, favourable conservation condition for the other two habitats would also be achieved. #### 1.1 Raised Bogs Raised bogs are accumulations of deep peat (typically 3-12m) that originated in shallow lake basins or topographic depressions. The name is derived from the elevated surface, or dome, that develops as raised bogs grow upwards through the accumulation of peat; the domed effect is often exaggerated when the margins of a bog are damaged by turf cutting or drainage, and are drying out. Raised bogs are most abundant in the lowlands of central and mid-west Ireland. Irish raised bogs are classified into two sub-types based on phytosociological and morphological characteristics (Schouten 1984): 1. Western or intermediate raised bogs, and 2. True midland or eastern raised bogs. In terms of overall morphology, the main difference between these two raised bog types is that while eastern raised bogs tended to stay more confined to the depressions in which they were formed, western raised bogs tended to grow out beyond their original basin, presumably a result of the higher rainfall levels (Cross 1990). In terms of vegetation differences the most obvious difference between the two bog types is the presence of a number of oceanic plant species on western raised bogs which are absent from the true midland raised bogs. The liverwort species *Pleurozia purpurea*<sup>1</sup> and the moss species *Campylopus atrovirens* grow on western raised bogs but not on eastern raised bogs; similarly, *Carex panicea* is generally more common on the high bog surfaces of western raised bogs (Schouten 1984). All of these plant species are widespread in the low-level Atlantic blanket bogs and their presence in western raised bogs is presumed to be due to the higher rainfall levels and greater rain-derived nutrient fluxes. Exploitation has been extensive and none of the remaining Irish raised bogs are completely intact (Cross 1990). It is estimated that less than 10% of the original raised bog habitat in Ireland is in a near intact state (uncut), with less than 0.5% continuing to support ARB (DAHG 2014). Excavated face banks, whether active or inactive, are a common feature around the margins. Any areas where part of the bog has been removed are termed cutover bog, with the remaining area referred to as high bog or intact bog. In a natural state, raised bogs are circled by a wetland fringe, known as the lagg zone, which is usually characterised by fen communities. In Ireland, most laggs have been lost through drainage and land reclamation (Fossitt 2000). \_ <sup>&</sup>lt;sup>1</sup> Note on species nomenclature: In the case of plant species, only scientific names are used throughout the main text while common English names are included in tables. In the case of faunal species, common English names are used throughout the text together with scientific names. The surface of a relatively intact raised bog is typically wet, acid, deficient in plant nutrients, and supports specialised plant communities that are low in overall diversity and comprising species adapted to the biologically harsh conditions. The vegetation is open, treeless and bog mosses or *Sphagnum* species dominate the ground layer. Small-scale mosaics of plant communities are characteristic and reflect the complex microtopography of hummocks and hollows on the bog surface (see Section 1.1.1 below). Raised bogs are driest at the margins and wetness generally increases towards the centre of the peat mass where well-developed pool systems are most likely to occur. Raised bogs may also contain soaks and flushes (wet 'active' or dry 'inactive') due to the increased supply of nutrients over time through concentrated surface flows, or where there are links with regional groundwater or the underlying mineral substratum. Slight mineral enrichment and / or constant through flow of water provide conditions suitable for a range of species that are not typically associated with other areas of raised bog. When damaged by peat extraction or drainage, the water table in the peat drops and the bog surface becomes relatively dry; pools are rare or absent, cover of bog mosses is greatly reduced and *Calluna vulgaris* increases in abundance. The drop in water table causes the peat to compress under its own weight causing the bog surface to deform. Greater deformation occurs closest to areas where the water table has dropped. This increases the slope of the bog surface causing rain falling on the ground surface to flow off the bog more quickly. The effect is normally greatest around the margins and in a typical situation surface wetness increases towards the centre of the bog. Trees such as *Betula pubescens* and *Pinus sylvestris* frequently invade the drier cut margins, but may also occur in flushed areas. In Ireland, the Annex I habitat ARB is currently considered to be in unfavourable bad conservation status principally as a result of marginal turf cutting, more recent semi-industrial peat extraction, and associated drainage effects caused by these activities (NPWS 2008; 2013). The lowering of regional groundwater levels is also known to have had an effect on some sites. Fires associated with turf cutting, dumping, or agricultural activities may also adversely affect the condition of the habitat. #### 1.1.1 Raised Bogs Microtopography Raised bogs are typically treeless and are characterised by a distinctive vegetation dominated by bog mosses (*Sphagnum*), sedges, and dwarf shrubs, all of which are adapted to waterlogged, acidic and exposed conditions. Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical surface features of hummocks, hollows, lawns, and pools. The wettest bogs, which have extensive pool systems, have the greatest variety of plant and animal life and support a range of specialist species. The following terms that describe microtopography are generally accepted in the study of mire ecology (Gore 1983). A schematic diagram showing the typical microtopographical divisions is presented in Figure 1. #### **Pools** Depressions in the bog surface where the water table remains above the surface level all year around or below surface level for only a very short period of time. They are characterised by the presence of aquatic plant species such as *Sphagnum cuspidatum*, *S. denticulatum*, and *Cladopodiella fluitans*. In more degraded scenarios or where high seasonal water fluctuation occurs, the pools contain open water and/or algae. Tear pools are found on bogs where internal tensions, due to mass movement of peat, has taken place within the high bog and has caused the development of elongated pools. These are frequently found on western bogs and may be natural or anthropogenic in origin. #### **Hollows** These are shallow depressions (less than 5cm deep) on the bog surface where surface water collects, or where the water table reaches or lies just above ground level, depending on seasonal conditions. They are often filled with *Sphagnum* species such as *S. papillosum* and *S. cuspidatum*. They take many forms but are often eye shaped. Marginal hollows tend to be elongated as they are focused points for surface water run-off. They are often dominated by *Narthecium ossifragum*. #### Lawns These are shallow hollows or flat areas where one species dominates to form a lawn. This is frequently a *Sphagnum* species, such as *Sphagnum magellanicum*, or *S. papillosum* which can completely fill in a hollow to form a small lawn. #### **Flats** These are more or less flat areas which are intermediate between hollow and hummock communities. They tend to be drier than the above situations. #### **Hummocks** These are mounds on the bog surface which can range from a few centimetres to more than one metre in height. They are usually composed mainly of *Sphagnum* species, such as *Sphagnum magellanicum*, *S. capillifolium*, *S. austinii* and *S. fuscum* but other bryophyte species such as *Hypnum jutlandicum* and *Leucobryum glaucum* are also important, especially as the hummock grows taller and becomes drier. *Calluna vulgaris* is another important element, as it flourishes where the water table is not at surface level (Kelly & Schouten 2002). **Figure 1** Raised bog microtopographical divisions on the high bog surface (reproduced from Kelly & Schouten 2002). #### 1.1.2 Typical Flora of Irish Raised Bogs Raised bogs are characterised by a distinctive vegetation dominated by a variety of mosses (e.g. Sphagnum spp., Hypnum spp., Racomitrium spp.), sedges and grass-like species (e.g. Eriophorum spp., Rhynchospora spp., Narthecium ossifragum, Molinia caerulea and Carex spp.), and dwarf shrubs (e.g. Calluna vulgaris, Erica tetralix, Vaccinium spp. and Empetrum nigrum). In addition to these groups, a number of other species characterise raised bogs including carnivorous plants (e.g. Drosera spp., Utricularia spp.), lichens of both the bog surface and epiphytes on the stems of dwarf shrubs and the occasional trees on bogs (e.g. Cladonia spp., Usnea spp.). Herbaceous plants are not a significant element on raised bogs and include a few commonly occurring species such as Menyanthes trifoliata, Pedicularis sylvatica, and Potentilla erecta (Cross 1990). Drier areas and hummocks usually support *Calluna vulgaris, Eriophorum vaginatum, Trichophorum germanicum, Erica tetralix,* lichens (*Cladonia* spp.), bog mosses (*Sphagnum capillifolium, S. austinii, S. fuscum, S. papillosum*) and other mosses (*Dicranum scoparium, Leucobryum glaucum*). Wet hollow areas and pools are characterised by *Eriophorum angustifolium, Rhynchospora alba, Narthecium ossifragum, Drosera* spp., *Menyanthes trifoliata,* bladderworts (*Utricularia* spp.) and bog mosses (*Sphagnum cuspidatum, S. denticulatum and S. magellanicum*). A list of flora species that are regarded as being typical of ARB habitat in Ireland is presented in Table 1. A number of these typical species would have a restricted distribution and do not occur throughout the range of the habitat in Ireland (see above), therefore only a subset of these species would be expected to be present on any individual bog. **Table 1** Flora species typically associated with active raised bog in Ireland (after NPWS 2013). Species list is based on vegetation communities defined by Kelly (1993) and Kelly & Schouten (2002). | Common name | Scientific Name | |-----------------------------|--------------------------| | Bog rosemary | Andromeda polifolia | | Bog bead moss | Aulacomnium palustre | | Bristly Swan-neck moss* | Campylopus atrovirens* | | Lichen | Cladonia ciliata | | Lichen | Cladonia portentosa | | Long leaved sundew | Drosera anglica | | Intermediate leaved sundew* | Drosera intermedia* | | Round leaved sundew | Drosera rotundifolia | | Common cotton grass | Eriophorum angustifolium | | Hare's tail cotton grass | Eriophorum vaginatum | | Large white moss | Leucobryum glaucum | | Bogbean | Menyanthes trifoliata | | Bog asphodel | Narthecium ossifragum | | Purple spoonwort* | Pleurozia purpurea* | | Woolly fringe moss* | Racomitrium lanuginosum* | | White beak-sedge | Rhynchospora alba | | Austin's bog moss | Sphagnum austinii | | Red bog moss | Sphagnum capillifolium | | Feathery bog moss | Sphagnum cuspidatum | | Cow-horn bog moss* | Sphagnum denticulatum* | | Rusty bog moss | Sphagnum fuscum | | Magellanic bog moss | Sphagnum magellanicum | | Papillose bog moss | Sphagnum papillosum | | Golden bog moss* | Sphagnum pulchrum* | | Lustrous bog moss | Sphagnum subnitens | | Bladderwort | Utricularia minor | | Cranberry | Vaccinium oxycoccos | Notes: \* Species more typical of western raised bog sites. #### 1.1.3 Typical Fauna of Irish Raised Bogs Raised bogs are extremely nutrient poor ecosystems. Acidic, waterlogged and exposed conditions make them an unattractive habitat for animal life. As a consequence they are relatively poor both in terms of species diversity and population densities. Many species are opportunists, vagrant or temporary rather than specialists, but nonetheless may have an important impact on the ecosystem through nutrient imports and exports or other interactions (Cross 1990). A list of fauna species that would be typically associated with raised bog habitat in Ireland is presented in Table 2. The species listed are not confined to ARB and most, if not all, will use other areas of the bog and surrounding habitats. Raised bog is unsuitable habitat for many vertebrates due to the lack of available foraging and suitable breeding places. The Irish hare is the only mammal commonly occurring. The common frog is the most common vertebrate predator. Although 18 species of birds have been reported breeding on raised bogs (Wilson 1990) many of these species utilise the bog as a nesting habitat only. They are dependent on other neighbouring habitats such as open water bodies, callows and wet grassland particularly for feeding. Just a few species of bird, including meadow pipit (*Anthus pratensis*), skylark (*Alauda arvensis*) and curlew (*Numenius arquata*) complete their full breeding cycle on the bog and the first two species are the commonest species occurring (Bracken *et al.* 2008). Red grouse (*Lagopus lagopus*) must also be included as a typical bog species, occurring year round as a resident. Red grouse and curlew have declined significantly on across raised bogs in recent times. BirdWatch Ireland have published an Action Plan for Raised Bog Birds in Ireland which lists 13 species of conservation concern that are associated with Raised Bogs (O'Connell 2011). A recent review of birds of conservation concern in Ireland has since added meadow pipit (*Anthus pratensis*) to the red (most endangered) list of Birds of Conservation Concern in Ireland (BoCCI) (Colhoun & Cummins 2013). Our knowledge of the invertebrate assemblages associated with Irish raised bogs remains incomplete (particularly micro-invertebrate species) with few studies undertaken (Reynolds 1984a; Reynolds 1984b; Reynolds 1985; De Leeuw 1986; O Connor *et al.* 2001; Crushell *et al.* 2008; Hannigan & Kelly-Quinn 2011; Wisdom & Bolger 2011, Nolan 2013). Van Duinen (2013) highlights the importance of structural diversity at various spatial scales (e.g. microscale of hummock hollow topography to macro-scale which would include the landscape setting of the bog, see Schouten (2002)) as a prerequisite for hosting the full species diversity of raised bog landscapes. A recent study of Lepidoptera associated with raised bogs identified two species that appear to be characteristic of higher quality raised bog habitat, namely bordered grey (*Selidosema brunnearia* (Villers, 1789)) and light knot grass (*Acronicta menyanthidis* (Esper, 1789)) (Flynn 2014). Recent research on spiders has revealed that a number of species are known to occur in Ireland only on raised bog habitats, all of which are considered local/uncommon or rare across Europe (Myles Nolan pers. comm.). Five of these species that can be considered useful indicators of ARB include: *Glyphesis cottonae* (La Touche 1945), *Walckenaeria alticeps* (Denis 1952), *Satilatlas britteni* (Jackson 1913), *Pirata piscatorius* (Clerck 1757), and *Minicia marginella* (Wider 1834) (Myles Nolan pers. comm.). The information currently available on other invertebrate groups of peatland systems in Ireland is not sufficient to allow a determination of many species that are typically associated with or may be characteristic of higher quality ARB. A selection of invertebrate species and species groups that are known to be typically associated with raised bogs are presented in Table 2. **Table 2** Fauna species typically associated with raised bog ecosystems in Ireland (after O'Connell 1987; Cross 1990; Renou-Wilson *et al.* 2011; Bracken & Smiddy 2012). | Common name | Scientific name | |-------------------------------------|----------------------------------------------| | Mammal species | | | Irish hare | Lepus timidus hibernicus | | Otter | Lutra lutra | | Pygmy shrew | Sorex minutes | | Fox | Vulpes vulpes | | Bird species | , , | | Skylark | Alauda arvensis | | Mallard | Anas platyrhynchos | | Greenland white-fronted goose | Anser albifrons flavirostris | | Meadow pipit | Anthus pratensis | | Hen harrier | Circus cyaneus | | Cuckoo | Cuculus canorus | | Merlin | Falco columbarius | | Kestrel | Falco tinnunculus | | Snipe | Gallinago gallinago | | Red grouse | Lagopus lagopus | | Curlew | Numenius arquata | | Golden plover | Pluvialis apricaria | | Lapwing | Vanellus vanellus | | Reptiles and amphibians | | | Common lizard | Lacerta vivipara | | Common frog | Rana temporaria | | Typical invertebrates | | | Black slug | Arion ater | | Large heath butterfly | Coenonympha tullia | | Marsh fritillary butterfly | Euphydryas aurinia | | Bog-pool spider | Dolomedes fimbriatus | | Water striders | Gerris and Velia species | | Oak eggar moth | Lasiocampa quercus | | Four-spotted chaser dragonfly | Libellua quadrimaculata | | Fox moth | Macrothylacia rubi | | Ant | Myrmica ruginodis | | Emperor moth | Saturnia pavonia | | Great green bog grasshopper | Stethophyma grossa | | Other species groups that are well | Araneae (spiders and mites) | | represented on raised bogs include: | Ceratopogonidae (biting-midges) | | | Chironomids (non-biting midges) | | | Coleoptera (beetles) | | | Collembola (springtails) | | | Diptera (true flies) | | | Dytiscidae (water beetles) | | | Hemiptera (true bugs) | | | Hymenoptera (bees, wasps, ants and sawflies) | | | Lepidoptera (butterflies and moths) | | | Odonta (dragonflies and damselflies) | | | Orthoptera (grasshoppers) | | | Syrphidae (hoverflies) | | | Tipulidae (craneflies) | | | Tabanidae (horseflies) | | | ravaniude (norsenies) | #### 1.2 Habitats Directive Raised Bog Habitats in Ireland Four habitat types listed on Annex I of the EU Habitats Directive are typically associated with raised bogs in Ireland, two of which are priority habitats (\*): - 7110 Active raised bogs (ARB)\* - 7120 Degraded raised bogs still capable of natural regeneration (DRB) - 7150 Depressions on peat substrates of the Rhynchosporion - 91D0 Bog woodland\* The interpretation manual of EU habitats gives the following description for 'active raised bogs': "Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-Sphagnetalia magellanici, Scheuchzerietalia palustris p., Utricularietalia intermediominoris p., Caricetalia fuscae p.). The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included." (CEC 2007). DRB should be, according to the interpretation manual capable of regeneration to 'Active Raised Bog' in 30 years if appropriate measures are put in place (i.e. no major impacting activities are present and any necessary restoration works are implemented). In Ireland, the identification of ARB is made at ecotope level based on the vegetation classification developed by Kelly (1993) and Kelly & Schouten (2002). Raised bog vegetation communities are grouped into a series of community complexes and these complexes are then amalgamated into a series of ecotopes characterised by different physical characteristics using the approach outlined by Kelly & Schouten (2002). The main ecotopes that community complexes are grouped into include: - Central ecotope - Sub-central ecotope - · Active flushes and soaks - Sub-marginal ecotope - Marginal ecotope - Inactive flushes - Face-bank ecotope Actively accumulating peat conditions occur within the sub-central and central ecotopes, which are the wettest on the bog and an indication of good quality ARB. Active flushes and soaks are also dominated by *Sphagnum* mosses and typically have wet conditions. These features are associated with ARB and contribute to the overall diversity of the habitat. The adjacent surrounding marginal, sub-marginal, and face-bank bog areas typically have a supporting function for the central and sub-central communities but are not peat accumulating. These drier ecotopes may or may not correspond to the Annex I habitat DRB, as it depends on whether they are capable of regeneration to ARB. Other drier ecotopes recorded on the high bog that do not correspond to ARB include 'inactive flushes' which typically have a low *Sphagnum* cover. The Annex I habitat Rhynchosporion depressions (7150) typically occurs along pool edges and on flats underlain by deep, wet and quaking peat. Typical plant species include Rhynchospora alba, Drosera anglica, Narthecium ossifragum, Sphagnum cuspidatum, S. denticulatum, S. magellanicum, S. papillosum, Menyanthes trifoliata, and Eriophorum angustifolium. The priority Annex I habitat bog woodland is also actively peat-forming and overlaps with the ARB habitat. Such woodlands are usually dominated by *Betula pubescens* with a characteristic ground cover dominated by *Sphagnum* moss species, which often form deep carpets, and other mosses including species of *Polytrichum*. Woodland areas are occasionally found on raised bogs that have an absence of the characteristic moss layer and are not regarded as peat forming. Such areas do not correspond to the Annex I habitat. #### 1.2.1 Restoration of Active Raised Bog in Ireland As already mentioned in the section 1.1, ARB is currently considered to be in unfavourable bad conservation status in Ireland. In addition, according to its definition, DRB should be capable of regeneration to ARB in a 30-year timescale. Thus, it follows that restoration measures are required in order to halt further losses and increase the area of ARB as well as to improve the condition of existing areas of the Annex I habitat. Most of the restoration works undertaken so far in Ireland have concentrated on the high bog (e.g. Clara Bog, Mongan Bog, Sharavogue Bog and Raheenmore Bog) to prevent further losses as well as to restore areas to ARB. Nevertheless, some restoration works have also been undertaken on cutover areas such as at Ballykenny and Fisherstown Bogs and Killyconny Bog. Such work aims to do one or more of the following (depending on the bog in question): restore ARB on the high bog; reduce further ARB and DRB loss on the high bog; restore peat forming habitats (such as ARB, bog woodland, poor fen) on the cutover. Works undertaken by the NPWS have indicated that there are significant differences, both ecological and economic, when comparing the effectiveness of works carried out on the cutover with those carried out on the high bog. Positive and significant results (i.e. expansion or development of ARB) can be achieved over a relatively short timeframe (10 years) on favourable areas of the high bog by blocking high bog drains. In contrast, a longer time period (30 years+) is required to achieve active peat formation on cutover areas, and even then the results are generally confined to smaller areas; i.e. flat areas (≤0.3% surface slope) or enclosed depressions that have sufficient water flow (minimum catchment 0.5ha) to maintain wet conditions throughout the year. A longer time period (minimum 50-100 years) is likely to be required for high quality ARB habitat (vegetation structure and species diversity) to develop on such cutover areas. In addition, costs of restoration measures on cutover areas are typically significantly higher than those on high bog areas. #### 1.3 Bellanagare Bog SAC The SAC includes the raised bog, known as Bellanagare Bog and surrounding areas which include cutover bog, heath, wet grassland, and several small conifer plantations. The SAC has been selected for three Annex I habitats: - [7110] Active raised bogs\* - [7120] Degraded raised bogs still capable of natural regeneration - [7150] Depressions on peat substrates of the Rhynchosporion Bellanagare Bog is a large bog situated 6km north-north-east of Castlerea in Co. Roscommon. It is classified as a western, or intermediate, raised bog, because it shows features of both raised bog and blanket bog. The bog is underlain by muddy Carboniferous limestone with a low permeability. The sub-soil is predominantly of clayey limestone till. The bog lies in an upland area at the top of a surface catchment divide. The surface of the bog is undulating and the peat is concentrated on ridges, with flushes occurring in between. A number of streams, including the Frances River, rise within the site. The bog is traversed by several tracks. A large section of the SAC is in state ownership. #### 1.3.1 Flora of Bellanagare Bog ARB on Bellanagare Bog includes central and sub-central ecotope as well as active flush. The highest quality ARB is found in the form of two small areas of central ecotope and a small active flush, essentially an infilling lake or soak. The two small areas of central ecotope feature interconnecting *Sphagnum* pools, lawns and hummocks. Pools cover 26-50% of these areas with the *Sphagnum* cover approximately 50% composed mostly of *S. cuspidatum* in pools, but also with *S. denticulatum* in pools, *S. papillosum* in lawns, and *S. austinii* and *S. capillifolium* in hummocks. The western indicators *Campylopus atrovirens* and *Racomitrium lanuginosum* are also present. *Calluna vulgaris, Eriophorum vaginatum, E. angustifolium* and *Rhynchospora alba* are the most dominant vascular plants. The active flush/soak system, is very wet and quaking and has an even higher *Sphagnum* cover (76-90%) again composed mostly of *S. cuspidatum* with *S. papillosum*, *S. magellanicum* and *S. pulchrum* present in lawns around the pool margin. Hummocks of *S. capillifolium* and tall *Calluna vulgaris* are sparsely scattered throughout the flush while *Eriophorum angustifolium* is common throughout the quaking pool and *Aulacomnium palustre* is abundant in places (Fernandez *et al.* 2014a, b). The remaining areas of ARB are described in detail according to the lobes in which they occur by Fernandez et al. (2014a, b). Some areas of ARB at Bellanagare Bog have a relatively high Sphagnum cover (averaging at circa 50% cover), it is composed mostly of hummocks of Sphagnum capillifolium with only occasional S. tenellum, S. papillosum and S. cuspidatum. Calluna vulgaris and Eriophorum vaginatum are dominant vascular plants and evidence of flushing in some of the flushes was indicated by the presence of Empetrum nigrum, Vaccinium oxycoccos, V. myrtillus, and the mosses Aulacomnium palustre, Dicranum scoparium, Polytrichum strictum, Pleurozium schreberi and Hylocomium splendens. Some sub-central ecotope areas feature pools covering 11-25% of the surface area and an overall *Sphagnum* cover of 34-50%. *Calluna vulgaris, Rhynchospora alba, Narthecium ossifragum* and *Eriophorum angustifolium* are the dominant vascular plants while *S. papillosum* and *S. cuspidatum* dominate the *Sphagna* layer with *S. pulchrum, S. magellanicum* and *S. denticulatum* also present as well as hummocks of *S. capillifolium* and active hummocks of *S. austinii* and the western indicator *Campylopus atrovirens*. The cover of *Cladonia portentosa* is very low (<4%). Sphagnum fuscum is present in another sub-central ecotope area with an interconnecting pool cover of circa 30% and an overall Sphagnum cover of 51-75% dominated by S. cuspidatum in pools and S. capillifolium in hummocks with S. papillosum and S. magellanicum also present. Narthecium ossifragum and Carex panicea dominate in poorer quality patches. An area of borderline sub-marginal/sub-central ecotope was noted by Fernandez *et al.* (2014a, b) with pools, which appeared to have dried out somewhat so that they are more like *Sphagnum*-filled depressions that graded into *Narthecium* dominated depressions where the complex graded into sub-marginal ecotope. The overall *Sphagnum* cover is estimated at 30% composed mostly of hummocks of *S. capillifolium* and *S. papillosum* with *S. cuspidatum* in pools and with *S. magellanicum* and relict hummocks of *S. austinii* also present. *Calluna vulgaris* and *Eriophorum vaginatum* are the most dominant vascular plants although Narthecium ossifragum and Carex panicea are frequent in poorer quality patches. The western indicator Racomitrium lanuginosum is also recorded and the cover of Cladonia portentosa is high (34-50%). Some sub-central ecotope areas show evidence of flushing indicated by the scattered presence of *Molinia caerulea* and *Aulacomnium palustre*. Active hummocks of *Sphagnum austinii* are also noted in other sub-central ecoptope areas with *Calluna vulgaris* and *Rhynchospora alba* dominating alongside them. Three flushes are noted to be irregularly shaped with a narrow linear axis indicating flow paths (Fernandez et al. 2014a, b). Pools are absent and the *Sphagnum* cover is 34-75% composed mostly of hummocks *S. capillifolium* with *S. papillosum* and *S. cuspidatum* also present. Tall *Calluna vulgaris* dominates the vegetation along with a much lower cover of *Eriophorum vaginatum* with *Molinia caerulea*, *Vaccinium oxycoccos*, *Polytrichum strictum* and *Aulacomnium palustre* also present. The cover of *Cladonia portentosa* is very low (< 5%). A small (circa 10x5m) scrub area, dominated by *Salix* sp., with *Myrica gale*, tall *Calluna vulgaris*, and *Empetrum nigrum* is also present in one flush. A smaller active flush has its central axis dominated by *Juncus effusus*. The north-eastern end of the flush has a high cover of *Sphagnum cuspidatum* while the *Sphagnum* layer in the south-west is dominated by *S. capillifolium* and *S. papillosum* and also supports *S. fallax* and *S. palustre*. Non-active raised bog habitat at Bellanagare Bog includes sub-marginal, marginal and face bank ecotopes, as well as inactive flushes and dry woodland (Fernandez *et al.* 2014a, b). Although some areas of DRB have a relatively well-developed raised bog flora, they are affected by water loss to varying degrees, and are usually devoid of permanent pools. Calluna vulgaris and Eriophorum vaginatum dominate the vegetation with a Sphagnum cover ranging from 34-50%, composed almost entirely of hummocks of S. capillifolium. In other parts, the Sphagnum cover ranges from 11-25% and Carex panicea and Narthecium ossifragum are more common. Drier areas are recorded as a band around the margin of the high bog. Sphagnum cover here is very low (usually <10%) and the vegetation is characterised by a higher cover of Carex panicea, Narthecium ossifragum, Trichophorum germanicum and Calluna vulgaris. On Bellanagare Bog, high bog also features several inactive flushes which have a low *Sphagnum* cover (<25%) and are dominated by *Molinia caerulea*. The *Sphagnum* layer is almost exclusively dominated by hummocks of *S. capillifolium*. *Calluna vulgaris* and *Eriophorum vaginatum* dominate the vegetation with *Molinia caerulea*, *Vaccinium oxycoccos* and *Aulacomnium palustre* present at low cover values. A small area of dry *Betula pubescens* dominated woodland occurs at the southern tip of the high bog with no *Sphagnum* and abundant *Rhytidiadelphus triquetrus*, *Thuidium tamariscinum* and *Rubus fruticosus*. A small stream/channel flowed through the wood. This feature is thought to have grown over a previous bog burst (Kelly *et al.* 1995). Fernandez et al. (2014a, b) found Rhynchosporion vegetation to be widespread on Bellanagare Bog. It is found in both ARB and non-active areas, but tends to be best developed and most stable in the wettest areas of ARB. In these areas, the Rhynchosporion vegetation occurs within *Sphagnum* hollows and along *Sphagnum* pool edges and on lawns. It was most frequent in sub-central complex ecotope areas. Typical plant species include *Rhynchospora alba*, *Sphagnum cuspidatum*, *S. magellanicum*, *S. papillosum*, *Drosera anglica* and *Eriophorum angustifolium*. *Rhynchospora alba* was also found within non-active ecotopes, but always associated with wet features such as hollows and run-off channels especially the frequent erosion channels within marginal ecotope areas. Fernandez et al. (2014a, b) recorded four small separate blocks (totalling 9.5ha) of conifer plantations on the high bog. #### 1.3.2 Fauna of Bellanagare Bog The following species have been recorded in the SAC in the past (DEHLG, 2000): red grouse (Lagopus lagopus), Greenland white-fronted goose (Anser albifrons flavirostris), golden plover (Pluvialis apricaria), hen harrier (Circus cyaneus), kestrel (Falco tinnunculus), snipe (Gallinago gallinago), skylark (Alauda arvensis), stonechat (Saxicola torquata), common sandpiper (Actitis hypoleucos), reed bunting (Emberiza schoeniclus), goldcrest (Regulus regulus), mallard (Anas platyrhynchos), curlew (Numenius arquata) and meadow pipit (Anthus pratensis). The only mammal noted in DEHLG (2000) is badger (Meles meles). This species was thought likely to be breeding within the SAC as a sett was recorded in the swallow-hole system in the north-west. DEHLG (2000) also reports the emperor moth (Saturnia pavonia) to be breeding on the bog. #### 2 Conservation objectives A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status of those habitats and species at a national level. Conservation objectives for habitats are defined using attributes and targets that are based on parameters as set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions. Attributes and targets may change or become more refined as further information becomes available. National Conservation Objectives for raised bog SACs have recently been published in the Draft National Raised Bog SAC Management Plan (DAHG 2014). The various attributes and the justification of appropriate targets used to define favourable conservation condition for ARB relevant to Bellanagare Bog SAC are discussed in the following sections. #### 2.1 Area NPWS has commissioned a number of raised bog surveys between 1993 and the present-Kelly et al. (1995); Derwin & MacGowan (2000); Fernandez et al. (2005); Fernandez et al. (2006); Fernandez et al. (2014a, b). Mapping from these surveys has been used to derive the area of ARB for each bog as shown in Table 3. More recent surveys have been able to employ more precise and detailed mapping techniques and more standardised ecotope descriptions. NPWS undertook a review of data from earlier surveys in 2014 taking into account these improved techniques with the aim of providing more accurate figures for ARB. This in some cases has resulted in a change in ARB area for these earlier time periods (NPWS, unpublished data). The national SAC target for the attribute 'habitat area' has been set at 2,590ha (DAHG 2014). This target is based on the estimated area of ARB (1,940ha) and DRB (650ha) present within the SAC network in 1994 (when the Habitats Directive came into effect). The area of ARB at Bellanagare Bog in 1994 is estimated to have been 84.0ha, while the area of DRB is estimated to have been 48.2ha at that time (see Table 3). Using the same approach that has been adopted in setting the national SAC target, the site-specific target for Bellanagare Bog would equate to 132.2ha (sum of ARB and DRB in 1994). However, in setting the site-specific target the current hydro-ecological conditions on the bog (including cutover) have been considered in order to ensure that the target being set is based on a realistic appraisal of what is achievable as set out below. The most recent monitoring survey of the bog estimated the area of ARB to be 49.6ha (Fernandez *et al.* 2014a, b). This represents a decrease of 34.4ha (40%) during the period 1994-2013. An additional survey undertaken in 2004 confirms that most of this decrease occurred during the period 1994-2004 and is likely to be attributable to negative effects resulting from ongoing peat cutting and active drainage (Fernandez *et al.* 2005). The current extent of DRB as estimated using a recently developed hydrological modelling technique, based largely on Light Detection and Ranging (LiDAR)<sup>2</sup> data is 105.4ha (see DAHG 2014 for further details of the technique). This represents the area of the high bog, which does not currently contain ARB but has topographical conditions deemed suitable to support ARB (see Map 1 which shows the total area of current and modelled potential ARB). This area was further refined to 73.8ha by estimating the area that could be restored by blocking drains on the high bog. This refinement was based on applying an efficacy factor (see DAHG 2014). Based on the current assessment of the bog, it is therefore concluded that the maximum achievable target for ARB on the high bog is 123.4ha, which is 8.8ha less than the estimated area at time of designation. However, it is important to note that this assumes no further decline of ARB due to impacting activities. Similarly, should the bog be significantly dependent on regional groundwater levels then any deepening of drains in the cutover could further impact the potential restoration of ARB on the high bog. **Table 3** Area of ARB and DRB recorded on the high bog at Bellanagare Bog in 1994, 2004, and 2013 (Source: Fernandez *et al.* 2014a, b). | 19 | 1994 | | 2004 | | 2013 | | |----------|----------|----------|----------|----------|----------|--| | ARB (ha) | DRB (ha) | ARB (ha) | DRB (ha) | ARB (ha) | DRB (ha) | | | 84.0 | 48.2 | 52.8 | Unknown | 49.6 | 73.8 | | A recent eco-hydrological assessment of the cutover surrounding the high bog undertaken as part of the restoration planning process estimates that, by implementing appropriate management, an additional 15.7ha of ARB could be restored in this area. The long term achievable target for ARB on Bellanagare Bog is therefore set at 139.1ha which is 6.9ha more than the estimated area of ARB and DRB in 1994. In conclusion, the site-specific target for the attribute habitat area is: **Restore area of active raised bog to 139.1ha, subject to natural processes.** #### 2.2 Range At a national scale, range represents the geographic range that encompasses all significant ecological variations of the ARB habitat. The national SAC target for the attribute 'range' has been set as 'not less than current range subject to natural processes'. However, range, in the form of habitat distribution, may also be important at the site level, particularly within larger SACs, including those containing a number of individual bogs (i.e. complexes). The attribute therefore under the parameter of range is 'Habitat distribution'. At the local level, it is important to conserve the variability and distribution of ARB across a <sup>&</sup>lt;sup>2</sup> LiDAR is a remote sensing technology that measures vertical surface elevation by illuminating a target with a laser and analysing the reflected light. This provides much more detailed topographical maps than can be collected by traditional surveying techniques. raised bog SAC. This will help to ensure the diversity of the habitat is maintained while lessening the impact of localised damaging activities such as fire. The conservation of ARB within Bellanagare Bog as set out in Section 2.1 above will contribute to safeguarding the national range of the habitat. The ARB habitat at Bellanagare Bog includes central and sub-central ecotope, as well as active flush and soak system. A map showing the most recent distribution of ecotopes throughout Bellanagare Bog is presented in Map 2. The site-specific target for the attribute habitat distribution is: **Restore the distribution and variability of active raised bog across the SAC.** #### 2.3 Structure and functions Structure and functions relates to the physical components of a habitat ("structure") and the ecological processes that drive it ("functions"). For ARB these include attributes such as the hydrological regime, water quality, habitat quality, species occurrence, elements of local distinctiveness, marginal habitats, negative physical indicators, and negative species occurrence. As several of these attributes are inter-connected, they are all included in order to better define habitat quality in a meaningful way. In some cases, attribute targets are not quantified; however, as more detailed information becomes available (for example through further research), more measurable site-specific targets may be developed. Structure and functions attributes are expanded on in the sections below. #### 2.3.1 High bog area On individual raised bogs adequate high bog is required to support the development and maintenance of ARB. Raised bog habitat that is classified as neither ARB nor DRB is still important particularly as a supporting habitat for those listed in Annex I of the Habitats Directive. It is an essential part of the hydrological unit which supports the ARB and DRB habitats. High bog is of value in its own right as a refuge for species characteristic of drier bog conditions as well as for providing a transitional zone between the Annex I habitats of the high bog and surrounding areas. Additional values for the maintenance of high bog include the preservation of its record of past environmental conditions and carbon storage. The area of high bog in the entire SAC network in 1994 was 10,740ha. The corresponding area in 2012 is 10,515ha – indicating that there has been a 225ha loss of high bog since 1994. The national target for the attribute 'high bog' habitat is to ensure no decline in extent of high bog to support the development and maintenance of ARB. The area of high bog within Bellanagare Bog SAC in 1994 was mapped as 889.9ha, while the corresponding area in 2012 is 879.1ha (based on interpretation of LiDAR and aerial photography flown in 2012), representing a loss of 10.8ha of high bog (DAHG 2014). The extent of high bog within the SAC in 2012 is illustrated on Map 1. The site-specific target for the attribute high bog is: **No decline in extent of high bog** necessary to support the development and maintenance of active raised bog. #### 2.3.2 Hydrological regime: water levels Hydrological processes are key drivers of raised bog ecology. The different raised bog communities, assemblages and species are affected by various hydrological attributes. For ARB, mean water levels need to be near or above the surface of bog lawns for most of the year. Seasonal fluctuations should not exceed 20cm, and water level should be within 10cm of the surface, except for very short periods of time (Kelly & Schouten 2002). Gentle slopes that limit intermittent lateral losses of water (through surface runoff) and encourage sustained waterlogging are the most favourable to achieve these conditions. Such conditions may be maintained on steeper slopes in areas of focused flow (flushes). The traditional view of water flowing across the bog laterally has been recently refined to also consider that water flows vertically through peat into the underlying substrate. Water loss, by this route, depends on the permeability of the material through which the water must flow and the difference in head (water level elevation) in the bog and underlying mineral substrate; larger differences encountered in higher permeability materials will result in greater losses. Although the proportion of water lost in this manner may be small, the sustained loss during prolonged dry periods may be sufficient to impact bog ecotopes. Drains extending into the mineral substrate in marginal areas surrounding the bog can lead to an increased gradient between the head in the peat and the head in the underlying substrate resulting in increased vertical water losses from the bog. The most recent description of drainage at Bellanagare Bog is presented in Fernandez *et al.* (2014a, b) who reported that 59.4km of drains impact upon raised bog habitats (10.7km of functional drains, 13.0km of reduced functional drains, 1.5km of drain which have been blocked but have been noted as being functional and 34.1km of reduced functional drains which have been previously blocked). Both the functional and reduced functional drains are considered to be impacting on high bog habitats and will continue to do so until they become completely non-functional. Substantial water losses were observed through several drains on the high bog, which is believed to have a significant impact on high bog hydrology. Fernandez *et al.* (2005) noted that there is an extensive peripheral drainage system on Bellanagare Bog associated with peat cutting, forestry plantations on the cutover and several roads, some of which extend onto the high bog. Cutover drains are found around almost the entire cutover. These drains are actively draining the high bog and therefore impacting on high bog habitats. There is very little drainage to the east of high bog where peat cutting is less extensive as the land is state-owned. Much of the knowledge regarding the hydrological requirements of raised bog communities in Ireland stems from the extensive ecological and hydrological work undertaken on Clara Bog since the early 1990s. The only available hydrological study for Bellanagare Bog is the work carried out by Kelly *et al.* (1995). The hydrochemistry survey identified high electrical conductivity (EC) values to the north-west of the bog (>260 $\mu$ S/cm) as well as elevated EC values where hopper-cutting was taking place to the west of the bog (c. 156 $\mu$ S/cm). EC values of approximately 150 $\mu$ S/cm were also recorded in drains to the east of the bog indicating the presence of small amounts of mineralised groundwater. The elevated EC values suggest groundwater was having an influence on the composition of the water within these drains. In most other areas surrounding the bog EC values close to 80 $\mu$ S/cm were recorded which is more typical of bog water. Upwelling groundwater is likely to have resulted in impacts on groundwater heads, which has the potential to result in impacts on the high bog surface. The risk of subsidence depends on the permeability of the underlying mineral substrate, which will influence the extent of impacts from changes to groundwater heads. Geological mapping indicates that the bog is underlain by a Visean limestone unit and a sandstone, siltstone and black mudstone unit. The limestone unit is a regionally important aquifer as it is subject to karstification (conduit), while the sandstone unit is a locally important aquifer, as it is moderately productive only in local zones. Subsoil mapping indicates that sandstone till is the main subsoil type in the surrounding area. The presence of a highly productive bedrock unit as well as potentially permeable substrate suggests that a decline in groundwater head may have contributed to subsidence on the high bog. The site-specific target for the attribute hydrological regime – water levels is: **Restore** appropriate water levels throughout the site. #### 2.3.3 Hydrological regime: flow patterns As outlined above, ARB depends on water levels being near or above the surface of bog lawns for most of the year. Long and gentle slopes are the most favourable to achieve these conditions. Changes to flow directions due to subsidence of bogs can radically change water regimes and cause drying out of high quality ARB areas and soak systems. A map illustrating the slopes and drainage patterns on Bellangare Bog based on a digital elevation model generated from LiDAR imagery flown in 2012 is presented in Map 3. As Bellanagare Bog is a large bog, the flow patterns are complex. The flow from the high bog converges in many areas where cutting and drainage have caused the bog surface to subside. These subsidence features alter the flow regime on the high bog dome and focus the flow off the bog toward them. Many of these areas of focused flow coincide with inactive flushes suggesting water may be being lost through the peat, indicating that these may be bedrock related features. Further deepening or maintenance of marginal drains has the potential to generate further subsidence which could increase surface slope and change flow patterns, thus impacting on the bog's surface. As noted above, the extent of impacts will be determined by the nature of the substrate and the change in head in the peat substrate. The site-specific target for the attribute hydrological regime – flow patterns is: **Restore**, where possible, appropriate high bog topography, flow directions and slopes. ### 2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas) Transitional zones between raised bogs and surrounding mineral soils are typically cutover bog and drained lagg zones. The maintenance / restoration of these areas will help to maintain hydrological integrity of ARB and DRB, and support a diversity of other wetland habitats (e.g. wet woodland, swamp and fen) as well as species that they sustain. In some cases, these areas may assist in reducing further losses of ARB / DRB on the high bog and in time could develop into active peat forming habitats (including ARB - see Section 2.1 above). These transitional zones, once restored, can provide ecosystem services through flood attenuation and water purification to downstream areas and potentially increase the carbon storage / sink function of the bog. The estimated extent of such transitional areas within the SAC network is 3,000ha (DAHG 2014). The national target for these transitional areas is to maintain / restore semi-natural habitats with high water levels around as much of the bog margins as necessary. Fernandez *et al.* (2014a, b) recorded 132ha of conifer plantations on the cutover bog at Bellanagare Bog. DEHLG (2000) noted that grazing by livestock (mostly cattle) occurs at a few isolated locations on the cutover within the SAC. This report also noted that fertilisers were applied to some small sections of improved grassland situated around the Frances River. These may be used for silage production. DEHLG (2000) noted numerous roads and old tracks within the SAC. Kelly *et al.* (1995) noted that the vegetation of the tracks/roads which criss-cross the SAC is dominated by *Ulex europaeus* and *Salix spp.* with some calcareous species on the track surfaces. Kelly et al. (1995) recorded that due to the ongoing localised peat extraction around much of the site (except around the south-western lobe) the vegetation of the cutover bog was dominated by species typical of such areas, with Juncus effusus and Molinia caerulea. To the west of the northern lobe there was some localised hand peat-cutting and the cutover here at the time of that survey was dominated by J. effusus and patches of Phragmites australis with Calluna vulgaris and Pteridium aquilinum on old turf banks and along some of the bog edge. To the south of the northern lobe and separating it from the mid-eastern lobe is an area of old peat-cutting dominated by Phragmites australis with Molinia caerulea, tall Calluna vulgaris and wet areas with Agrostis sp., Potamogeton polygonifolius, Ranunculus flammula, Sphagnum papillosum, Menyanthes, Eriophorum angustifolium and Aulacomnium palustre. Kelly *et al.* (1995) also recorded areas of *Ulex europaeus*, *Alnus glutinosa* and *Salix* spp. scrub close to one of the roads along the edge of the bog. They also recorded a strip of coniferous woodland to the east of the northern edge of the bog and here there is an area of mineral soil next to the bog. *Rubus fruticosus*, *Agrostis sp.*, *Anthoxanthum odoratum* and *Salix spp* occur in this area. To the west of this edge is a patch of *Phragmites*. There is also some rough grazing in the area. Close to a house in the area is a clump of deciduous trees. There is improved grassland to the east of the southern edge of the bog (Kelly *et al.* 1995). Kelly et al. (1995) noted an area of mineral soil overgrown with Molinia caerulea, Pteridium aquilinum, Fraxinus excelsior, Crataegus monogyna, Ulex europaeus, Salix spp. in the cutover bog at the west south-west tip of the bog. The site-specific target for the attribute transitional areas is: **Restore adequate transitional** areas to support / protect the active raised bog and the services it provides. #### 2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland A diverse good quality microtopography on raised bogs consists of *Sphagnum* dominated pools, hollows, lawns and hummocks, which support the highest diversity of species including hummock indicators: *Sphagnum fuscum* and *S. austinii*; pool indicators: *S. cuspidatum*, *S. denticulatum*, and indicators of lack of burning events e.g. some lichen species (*Cladonia* spp.) (Cross 1990). The national target for the attribute vegetation quality has been set as "to maintain / restore sufficient high quality bog vegetation (i.e. central ecotope and / or flushes / soaks). At least 50% of ARB habitat should be central ecotope and / or flush / soaks." Bog woodland is also regarded as a desirable variant of ARB as it adds species and structural diversity to the habitat and therefore, where relevant, also contributes to the 50% target at site level. A summary description of the vegetation of Bellanagare Bog is presented in Section 1.3.1 above. The vegetation and habitats of the bog have been described in more detail by Kelly *et al.* (1995) and Fernandez *et al.* (2005 & 2014). The ARB habitat at Bellanagare Bog includes central and sub-central ecotope, as well as, active flush systems and a flush/soak system. The finest examples of ARB feature hummocks, lawns and interconnecting *Sphagnum* pools. High quality ARB is also present in the form of active flush, particularly a flush in the mid-eastern lobe, which is essentially an infilling lake or soak where the *Sphagnum* cover is 76-90%. The distribution of ecotopes on Bellanagare Bog as recorded in 2009 is illustrated in Map 2. The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4 and on Map 2. It can be seen that the proportion of ARB that comprises central ecotope and active flush is currently 22.8%. Comparing this to results of surveys undertaken in 2004 indicates that although the total area of ARB decreased slightly across the site, the proportion of each of the component ecotopes remained relatively static. The target for this attribute is 69.6ha of high quality ARB (50% of ARB target area (139.1ha)). This requires an increase from the current area of 11.3ha. **Table 4** Extent of ecotopes classified as ARB in 2004 and 2013 (modified from Fernandez *et al.* 2014a, b). | Ecotope | 20 | 04 | 2013 | | |----------------------|-------|----------------|-------|----------------| | | ha | % of total ARB | ha | % of total ARB | | Sub-central ecotope | 41.38 | 78.3 | 38.27 | 77.1 | | Central ecotope | 0.36 | 0.7 | 0.36 | 0.7 | | Soaks / active flush | 11.06 | 20.1 | 10.96 | 22.1 | | Total ARB | 52.80 | | 49.59 | | The site-specific target for the attribute vegetation quality is: **Restore 69.6ha of central ecotope/active flush/soaks/bog woodland as appropriate.** #### 2.3.6 Vegetation quality: microtopographical features The characteristic microtopographical features of raised bogs are described in Section 1.1.1 above. Hummock and hollow microtopography is well developed on Bellanagare Bog (Kelly et al. 1995; Fernandez et al. 2014a, b). The site-specific target for the attribute microtopographical features is: **Restore adequate cover of high quality microtopographical features.** #### 2.3.7 Vegetation quality: bog moss (Sphagnum) species Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical microtopographical features as described in Section 2.3.6 above. The vegetation of a typical raised bog that is still hydrologically intact is characterised by the dominance of several species of Sphagna and dwarf ericoid shrubs. The most abundant species are *Sphagnum capillifolium*, *S. austinii* and *S. papillosum* which form hummocks or low ridges. *Sphagnum fuscum* may also form hummocks (Cross 1990). On the flats *Sphagnum magellanicum*, *S. papillosum*, *S. tenellum*, and *S. subnitens* are the key species. *Sphagnum pulchrum* may also be dominant in flats on western raised bogs. In permanently waterlogged hollows *Sphagnum cuspidatum* and *S. denticulatum* (western bogs) occur. *Sphagnum fallax* is common where there is slight flushing (Cross 1990). The most commonly occurring *Sphagnum* moss species that occur on raised bogs in Ireland are presented in Table 5 along with a summary of their ecology and typical contribution to peat formation. Kelly et al. (1995) and Fernandez et al. (2014a, b) provide information on the occurrence of *Sphagnum* species throughout Bellanagare Bog. **Table 5** *Sphagnum* species typically associated with raised bog ecosystems in Ireland. Ecology as described by Laine *et al.* (2009) with minor modifications. | Species | Ecology | Peat forming capacity | |------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------| | Sphagnum austinii | Hummock species | High | | Sphagnum capillifolium | Forms small hummocks and carpets | Moderate | | Sphagnum cuspidatum | Pool and hollow species | Low | | Sphagnum denticulatum | Pool and hollow species | Low | | Sphagnum fallax | Occurs in lawns and carpets, shade tolerant. Indicative of some nutrient enrichment (soaks and active flushes) | Low | | Sphagnum fuscum | Forms dense low and wide, and occasionally high hummocks | High | | Sphagnum magellanicum | Lawn species forming carpets and low hummocks | Moderate | | Sphagnum palustre | Forms hummocks and dense carpets, often in shaded conditions. Indicative of nutrient enrichment (soaks and active flushes) | Low | | Sphagnum papillosum | Lawn , hollow, and low hummock species | Moderate | | Sphagnum pulchrum | Grows in lawns and hollows, more typical of western bogs | Moderate | | Sphagnum squarrosum | Forms carpets and small mounds. Indicative of nutrient enrichment (soaks and active flushes) | Low | | Sphagnum subnitens | Occurs as individual shoots or small cushions and lawns. Tolerant of minerotrophic conditions | Moderate | | Sphagnum tenellum | Occurs as single shoots or weak cushions, typically in disturbed patches of the bog surface | Low | The site-specific target for the attribute bog moss (*Sphagnum*) species is: **Restore adequate** cover of bog moss (*Sphagnum*) species to ensure peat-forming capacity. #### 2.3.8 Typical ARB species: flora Bellanagare Bog supports the full complement of plant species typically associated with a western raised bog (see Section 1.1.2 above). Kelly *et al.* (1995) considered Bellanagare as a good example of a western raised bog, due to its large size and intactness. The key typical species that are indicative of high quality raised bog include *Sphagnum fuscum* and *S. austinii* which are associated with hummocks and *S. cuspidatum* and *S. denticulatum* which are associated with pools and hollows. The site-specific target for the attribute typical bog flora is: **Restore, where appropriate, typical active raised bog flora.** #### 2.3.9 Typical ARB species: fauna As mentioned in section 1.1.3, a list of typical fauna specific to ARB has not been developed and the table contains species that use the wider raised bog habitat. This may be refined as more information becomes available. Bellanagare Bog is likely to support a wide range of fauna species that are typically associated with raised bog habitat (see Section 1.1.3 above). The site-specific target for the attribute typical bog fauna is: **Restore, where appropriate, typical active raised bog fauna.** #### 2.3.10 Elements of local distinctiveness A range of features may be associated with raised bogs which add to the scientific, historical, or conservation value of a bog. These can include geological, topographical, archaeological and hydrological features (e.g. soaks, lakes, flushes) and noteworthy species of flora and fauna (Cross 1990). Notable species of flora and fauna include those listed in the Habitats and Birds Directives, Red-listed species and other rare or localised species. For this attribute, features that are particularly associated with ARB are relevant. #### 2.3.10.1 Site features Bellanagare Bog is considered to be a good example of a large, relatively intact western raised bog system in Ireland. This bog is considered somewhat unusual in that it has a surface morphology intermediate between that of a raised bog and blanket bog. Midland raised bog indicator species such as *Andromeda polifolia* and *Sphagnum magellanicum* are present. However they are not as common as in a true midland raised bog. A large number of flushes occur on the site in areas of surface water movement due to the unusual undulating topography of the bog surface. Flush types on the site include an infilling lake, an extensive *Molinia caerulea* flush with a high diversity of plant species, a large swallow-hole flush, and flushes associated with springs, rises and streams. #### 2.3.10.2 Rare flora No rare flora records have been reported from Bellanagare Bog. #### 2.3.10.3 Rare fauna As mentioned above, there is a lack of recent site-specific data relating to species that are particularly associated with ARB, including rare species. In conclusion, the site-specific target for the attribute elements of local distinctiveness is: Maintain features of local distinctiveness, subject to natural processes. #### 2.3.11 Negative physical indicators Raised bogs that have been damaged by marginal cutting and drainage, reclamation for agriculture, forestry activities, fire, surface drainage, or the lowering of regional water tables show a range of negative physical indicators (Cross 1990). Such negative physical features of ARB include: bare peat, algae dominated pools and hollows, marginal cracks, tear patterns, subsidence features such as dry peat and / or mineral mounds / ridges emerging or expanding, and burning evidence. At Bellanagare, non-active raised bog covers 829.3ha (94.4%) of the high bog area. It is drier than ARB and supports a lower density of *Sphagnum* mosses (generally less than 25% cover). It has a less developed microtopography while permanent pools and *Sphagnum* lawns are generally absent (Fernandez *et al.* 2014a, b) and some of the above mentioned negative physical indicator are found across this area. The site-specific target for the attribute negative physical indicators is: **Negative physical features absent or insignificant.** #### 2.3.12 Vegetation composition: native negative indicator species Indicators of disturbance on a raised bog include species indicative of drying out conditions such as abundant *Narthecium ossifragum* and *Trichophorum germanicum*; *Eriophorum vaginatum* forming tussocks; abundant *Sphagnum magellanicum* in pools previously dominated by species typical of very wet conditions (e.g. *Sphagnum cuspidatum*). Indicators of frequent burning events include abundant *Cladonia floerkeana* and high cover of *Carex panicea* (particularly in the true midlands raised bog type). Bellanagare Bog is predominantly composed of non-active raised bog habitat. This habitat is drier than the ARB areas and species such as *Erica tetralix, Calluna vulgaris, Eriophorum angustifolium, Narthecium ossifragum, Carex panicea* and *Trichophorum germanicum* tend to be the most frequent and conspicuous. Cover of *Sphagnum* mosses is relatively low in these areas. The site-specific target for the attribute native negative indicator species is: **Native negative indicator species at insignificant levels.** #### 2.3.13 Vegetation composition: non-native invasive species Non-native invasive species that can commonly occur on raised bog habitats include: *Pinus contorta, Rhododendron ponticum,* and *Sarracenia purpurea* (Cross 1990). There are four blocks of conifer plantations (not all are within the SAC) measuring a total of 9.5ha in extent on the high bog at Bellanagare. Considering the size of the high bog, these plantations are relatively small and are likely to be having a negative impact of low intensity on high bog habitats. A small number of *Pinus contorta* were recorded during the 2013 survey adjacent to conifer plantations in the south of the high bog. They were described as occurring in a very small area and 2-3m tall (Fernandez *et al.* 2014a, b). Fernandez et al. (2014a, b) recorded a single Rhododendron ponticum bush in the north-east of the high bog. This was also noted by Fernandez et al. (2005) and Kelly et al. (1995). No evidence of it spreading has been recorded. A second Rhododendron ponticum bush was also recorded during the 2013 survey in the south-east of the bog. This was not recorded previously. *Campylopus introflexus* is recorded as being frequent on Bellanagare Bog, particularly in the north of the site on peat dams and around drains where there is much disturbed ground from peat excavations. Invasive species are considered to have low importance/impact on high bog habitats. (Fernandez et al. 2014a, b). The site-specific target for the attribute non-native invasive species: **Non-native invasive** species at insignificant levels and not more than 1% cover. #### 2.3.14 Air quality: nitrogen deposition Peatlands are highly sensitive to air pollution, particularly nitrogen deposition. Reactive nitrogen from fossil fuel combustion or intensive agriculture can contaminate rain and snow, causing soil acidification, nutrient enrichment, and a decline in species that are sensitive to these conditions. There is evidence that the combined impact of elevated nitrogen deposition and a warming climate could exceed the sum of the individual stressors and lead to a dramatic decline in the biodiversity of mosses, sensitive vascular plants, and microbes, potentially leading to catastrophic peat loss (PEATBOG project - http://www.sste.mmu.ac.uk). Air pollution can change both the species composition and the functioning of peatlands. The primary atmospheric pollutant from the Industrial Revolution to the mid 1970s was sulphur deposition, but levels have since greatly declined. Reactive nitrogen (N) deposition (primarily NO3- and NH4+), which can both acidify and eutrophy, became significantly elevated over a widespread area in the early to mid-20th century and is now the major pollutant in atmospheric deposition across most of Europe (Fowler *et al.* 2005). Nitrogen is commonly a limiting terrestrial nutrient and in un-impacted peatlands it is tightly cycled. With long-term elevated N deposition, vegetation composition typically shifts toward species adapted to higher nutrient levels, with an overall loss of diversity (Malmer & Wallén 2005). In peatlands, field experiments with N additions within the current European range have shown significant declines in bryophyte species-richness and productivity, and shifts in composition toward vascular plants (Bobbink *et al.* 1998; Bubier *et al.* 2007). Community shifts toward more nitrophilous bryophytes in N-enriched regions such as parts of the Netherlands are also well documented (Greven 1992). In the UK, both a general survey of peatlands across the country (Smart *et al.* 2003), and a targeted study of *Calluna* moorland (Caporn *et al.* 2007) showed significant inverse relationships between levels of nitrogen deposition and species richness, with bryophytes particularly impacted. Changes in the vegetation also impact below-ground communities and biogeochemical processes. Moderate increases in N deposition from a low level may increase *Sphagnum* and vascular plant productivity without an equal increase in decomposition rates, leading to enhanced carbon accumulation (Turunen *et al.* 2004). However, shifts in species composition from bryophytes to vascular plants may increase the production of easily-decomposable plant material, leading to higher rates of decomposition, and reduced carbon accumulation (Lamers *et al.* 2000; Bubier *et al.* 2007). The particular sensitivity of nutrient-poor ombrotrophic peatlands to nitrogen enrichment is reflected in the low critical load threshold of between 5 and 10kg N/ha/yr for these ecosystems (Bobbink & Hettelingh 2011), a level which is exceeded over a significant portion of their range. An Irish study during the late 1990s undertaken by Aherne & Farrell (2000) concluded that total N deposition shows a strong east-west gradient, with lowest deposition in the west at 2kg N/ha/yr and highest in the east and south-east at 20kg N/ha/yr. Average N deposition over the Republic of Ireland was estimated to be approximately 12kg N/ha/yr. The study also concluded that the Critical Load Threshold for N was exceeded in at least 15% of ecosystems studied. The critical load applied to peatland ecosystems by Aherne & Farrell (2000) was 10kg N/ha/yr. This is in line with the recommendation by Bobbink & Hettelingh (2011) that the critical load should be set at the high end of the range in areas of high precipitation and at the low end of the range in areas of low precipitation assuming that Ireland represents a high precipitation area. It is recommended in the case of Bellanagare Bog that the level of N deposition should not exceed the low end of the range i.e. 5kg N/ha/yr. This recommendation is based on a precautionary approach, as the evidential basis for setting a higher level is not particularly strong as alluded to by Payne (2014). Total N deposition in the vicinity of Bellanagare Bog as reported by Henry & Aherne (2014) is 10.1kg N/ha/yr. The site-specific target for the attribute air quality is: Air quality surrounding bog close to natural reference conditions. The level of N deposition should not exceed 5kg N/ha/yr. #### 2.3.15 Water quality Ombrotrophic peat waters found on the surface of raised bogs are characterised by low pH values (pH < 4.5) (Moore & Bellamy 1974) and also have low values of electrical conductivity. This is due to the fact that the raised bog system derives its mineral supply from precipitation, which is usually acidic and low in nutrients. Raised bog vegetation exchanges cations with protons to further reduce the pH. Hydrochemistry varies in the areas surrounding a raised bog. Locally, conditions may be similar to the high bog due to a dominance of water originating from the bog. However, elsewhere in the marginal areas, there may be increased mineral and nutrient content of the water due to regional groundwater influences, runoff from surrounding mineral soils, and the release of nutrients through oxidation of peat resulting from reduced water levels. Kelly *et al.* (1995) reported hydrochemistry data from parts of the site. The survey identified high electrical conductivity (EC) values to the north-west of the bog (>260 $\mu$ S/cm) as well as elevated EC values where hopper-cutting was taking place to the west of the bog (c. 156 $\mu$ S/cm). EC values of approximately 150 $\mu$ S/cm were also recorded in drains to the east of the bog indicating the presence of small amounts of mineralised groundwater. The elevated EC values suggest groundwater was having an influence on the composition of the water within these drains. In most other areas surrounding the bog EC values close to 80 $\mu$ S/cm were recorded which is more typical of bog water. The site-specific target for the attribute water quality is: **Water quality on the high bog and** in transitional areas close to natural reference conditions. #### 3 References Aherne, J., & Farrell, E.P. (2000) Final Report: Determination and mapping of critical loads for sulphur and nitrogen and critical levels for ozone in Ireland. Environmental Protection Agency, Dublin, 212pp. Bobbink, R. & Hettelingh, J.P. (2011) Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. RIVM report 680359002, Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM). Bobbink, R., Hornung, M. & Roelofs, J.G.M. (1998) The effects of air—borne nitrogen pollutants on species diversity and semi—natural European vegetation. Journal of Ecology 86: 717–738. Bracken, F. & Smiddy, P. (2012) Lowland bogs, fens and reedswamps, pp. 73-89. In: Nairn, R., and O'Halloran, J. (eds.) Bird Habitats in Ireland. The Collins Press, Cork. Bracken, F., McMahon, B. & Whelan, J. (2008) Breeding bird populations of Irish Peatlands: capsule peatlands are very important habitats for birds despite low species diversity. Bird Study 55 (2): 169-178. Bubier, J., Moore, T. & Bledzki, L.A. (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology 13: 1168–1186. Caporn, S.J.M., Edmondson, J., Carroll, J.A., Pilkington, M. & Ray, N. (2007) Long-term impacts of enhanced and reduced nitrogen deposition on semi-natural vegetation. Report to Defra. Terrestrial Umbrella. Work Package 2: Impacts, Recovery and Processes. Task 4. Defra London. CEC (2007) Interpretation manual of European Union Habitats. Version EUR 27. European Commission, DG Environment, Brussels. Nature and Biodiversity. Colhoun, K. & Cummins, S. (2013) Birds of Conservation Concern in Ireland 2014–2019. Irish Birds 9: 523-544. Cross, J. (1990) The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance. The Stationery Office, Dublin. Crushell, P.H., Schouten, M.G.C., Robroak, B.J.M. & van Duinan, G-J. (2008) The contribution of soak lakes to macroinvertebrate diversity of raised bogs in Ireland. In: Crushell, P.H. (2008). Soak Systems of an Irish Raised Bog: a multidisciplinary study of their origin, ecology, conservation and restoration. PhD thesis, Wageningen University, with a summary in Dutch and Irish. DAHG (2014) National Raised Bog SAC Management Plan. Draft for Consultation. Main report and appendices. Department of Arts, Heritage and the Gaeltacht. DEHLG (2000) National Parks and Wildlife Service Conservation Plan. Draft 1. Bellanagare Bog cSAC & SPA: Site Code 592 & 105, County Roscommon. De Leeuw, J.P.M. (1986) Een onderzoek naar het voorkomen en de verspreiding van aquatische macro- en mirofauna in de Ierse hoogvenen. Deel 1: Macrofauna. Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands. Derwin, J. & MacGowan, F. (2000) Raised bog restoration project: a continuation of the investigation into the conservation and restoration of selected raised bog sites in Ireland. Unpublished report, Dúchas the Heritage Service, Dublin. Fernandez Valverde, F., Fanning, M., McCorry, M. & Crowley, W. (2005) Raised bog monitoring project 2004-2005. Document 3: Site Reports and Maps Volume 1-5. Unpublished Report. National Parks and Wildlife Service, Dublin. Fernandez, F., MacGowan, F., Crowley, W., Farrell, M., Croal, Y., Fanning, M. & McKee M. (2006) Assessment of the impacts of turf cutting on designated raised bogs 2003-06. Unpublished report, National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin. Fernandez, F., Connolly, K., Crowley, W., Denyer J., Duff, K. & Smith, G. (2014a) Raised bog monitoring and assessment survey 2013. Irish Wildlife Manuals, No. 81. National Parks and Wildlife Service, Department of Arts, Heritage and Gaeltacht, Dublin, Ireland. Fernandez, F., Connolly, K., Crowley, W., Denyer J., Duff, K. & Smith, G. (2014b) Raised bog monitoring and assessment survey 2013 – Bellanagare Bog – site report. National Parks and Wildlife Service, Department of Arts, Heritage and Gaeltacht, Dublin, Ireland. Flynn, C. (2014) Nocturnal Lepidoptera of Midland Raised Bogs. A thesis submitted to the National University of Ireland, Maynooth for the Degree of Master of Science (MSc.). Fossitt, J. (2000) A Guide to Habitats in Ireland. The Heritage Council, Ireland. Fowler, D., Smith, R.I., Muller, J.B.A., Hayman, G. & Vincent, K.J. (2005) Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environmental Pollution, 137: 15-25. Gore, A.J.P. (ed.) (1983) Ecosystems of the world 4A. Mires: Swamp, bog, fen and moor. General studies. Elsevier Scientific Publishing Company, Amsterdam. Greven, H.C. (1992) Changes in the moss flora of the Netherlands. Biological Conservation 59: 133-137. Hannigan, E., and Kelly-Quinn, M. (2011) Chapter 2.6 - Aquatic macro-invertebrate diversity. pp. 140-157 In: Renou-Wilson, F. (ed.) BOGLAND: Sustainable Management of Peatlands in Ireland. Environmental Protection Agency, Wexford. Henry, J. and Aherne, J. (2014) Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands. Science of the Total Environment 470–471: 216–223. Kelly, L. & Schouten, M.G.C. (2002) Vegetation. In: Schouten, M.G.C. (ed.), Conservation and restoration of raised bogs: geological, hydrological and ecological Studies. Dúchas — The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosbeheer, the Netherlands; Geological Survey of Ireland, Dublin. pp. 110-169. Kelly, L., Doak, M. & Dromey, M. (1995) Raised Bog Restoration Project: An Investigation into the Conservation and Restoration of Selected Raised Bog Sites in Ireland. Part 1 Summary Reports. National Parks & Wildlife Service, Department of Environment, Heritage and Local Government, Dublin. Kelly, M.L. (1993) Hydrology, hydrochemistry and vegetation of two raised bogs in county Offaly. PhD thesis, Trinity College Dublin. Laine, J., Harju, P., Timonen, T., Laine, A., Tuittila, E.S, Minkkinen, K. & Vasander, H. (2009) The Intricate beauty of Sphagnum mosses - A Finnish guide to identification. University of Helsinki Department of Forest Ecology Publications, 39: 1–190. Lamers, L. P. M., Bobbink, R. & Roelofs, J. G. M. (2000) Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6: 583–586. Malmer, N. & Wallén, B. (2005) Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type. Oikos, 109: 539–554. Moore, P.D. & Bellamy, D.J. (1974) Peatlands. Elek Science. London. Nolan, M. (2013) Spiders (Araneae) of Irish raised bogs: Clara bog, Co. Offaly and Carrowbehy bog, Co. Roscommon. Bulletin of the Irish Biogeographical Society 37: 172-203. NPWS (2008) The Status of EU Protected Habitats and Species in Ireland. National Parks and Wildlife Service, Ireland. NPWS (2013) The Status of EU Protected Habitats and Species in Ireland. Version 1.0. Unpublished Report, National Parks and Wildlife Services. Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland. O'Connell C. (ed.) (1987) The IPCC Guide to Irish Peatlands. Irish Peatland Conservation Council, Dublin. O'Connell, P. (2011) Action Plan for Raised Bog Birds in Ireland 2011-2020. BirdWatch Ireland, Kilcoole, Co Wicklow. O Connor, Á., Reynolds, J.D. & Kavanagh, B. (2001) Aquatic macroinvertebrate colonisation of artificial water bodies in cutaway oceanic raised bog in Ireland. In: Rochfort, L. and Daigle, J.Y. (eds.), Proceedings of the 11<sup>th</sup> International Peat Congress. pp. 742-750. Payne, R.J. (2014) The exposure of British peatlands to nitrogen deposition, 1900–2030. Mires and Peat 14: Art. 4. Renou-Wilson, F., Bolger, T., Bullock, C., Convery, F., Curry, J., Ward, S., Wilson, D. & Müller, C. (2011) BOGLAND: Sustainable Management of Peatlands in Ireland. STRIVE Report Series No.75. Prepared for the Environmental Protection Agency. pp. 181. Reynolds, J.D. (1984a) Invertebrate survey of Irish midlands raised bogs. Bulletin of the British Ecological Society 15: 81-82. Reynolds, J.D. (1984b) Invertebrate fauna of Irish raised bogs. Part II: Odonata, aquatic Hemiptera and Trichoptera. Bulletin of the Irish Biogeographical Society 8: 98-102. Reynolds, J.D. (1985) Invertebrates of Lough Roe, Co. Offaly; a rare and endangered bogland habitat. Bulletin of the Irish Biogeographical Society 9: 41-45. Schouten, M.G.C. (1984) Some aspects of the ecogeographical gradient in the Irish ombrotrophic bogs, paper presented to 7th Int. Peat Congress, Dublin, vol. 1, pp. 414-432, The International Peat Society, Helsinki. Schouten, M.G.C. (ed.) (2002) Conservation and Restoration of Raised Bogs – geological, hydrological and ecological studies. Dúchas – The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosheheer, The Netherlands; and The Geological Survey of Ireland. pp. 220. Smart, S.M., Robertson, J., Shield, E.J. & van de Poll, M.H. (2003) Locating eutrophication effects across British vegetation between 1990 and 1998. Global Change Biology 9: 1763-1774. Turunen, J., Roulet, N.T., Moore, T.R. & Richard, P.J.H. (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles. 18 (3): GB3002. Van Duinen G.A. (2013) Rehabilitation of aquatic invertebrate communities in raised bog landscapes. PhD thesis, Radboud University Nijmegen, the Netherlands. Wilson, H.J. (1990) Birds of raised bogs. pp. 29-36. In: Cross, J. (ed.) The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance. The Stationery Office, Dublin. Wisdom, R. & Bolger, T. (2011) Chapter 2.4 - Terrestrial invertebrate biodiversity. pp. 103-121 In: Renou-Wilson, F. (ed.) BOGLAND: Sustainable Management of Peatlands in Ireland. Environmental Protection Agency, Wexford. Map 1: Extent of potential active raised bog on Bellanagare Bog. Map 2: Distribution of raised bog ecotopes on Bellanagare Bog. Map 3: Digital elevation model and drainage patterns at Bellanagare Bog.