National Parks and Wildlife Service

Conservation Objectives Series

Connemara Bog Complex SAC 002034

An Roinn Ealaíon, Oidhreachta agus Gaeltachta

Department of Arts, Heritage and the Gaeltacht

National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht,

7 Ely Place, Dublin 2, Ireland.

Web: www.npws.ie E-mail: nature.conservation@ahg.gov.ie

Citation:

NPWS (201) Conservation Objectives: Connemara Bog Complex SAC 002034. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.

> Series Editor: Rebecca Jeffrey ISSN 2009-4086

Introduction

The overall aim of the Habitats Directive is to maintain or restore the favourable conservation status of habitats and species of community interest. These habitats and species are listed in the Habitats and Birds Directives and Special Areas of Conservation and Special Protection Areas are designated to afford protection to the most vulnerable of them. These two designations are collectively known as the Natura 2000 network.

European and national legislation places a collective obligation on Ireland and its citizens to maintain habitats and species in the Natura 2000 network at favourable conservation condition. The Government and its agencies are responsible for the implementation and enforcement of regulations that will ensure the ecological integrity of these sites.

A site-specific conservation objective aims to define favourable conservation condition for a particular habitat or species at that site.

The maintenance of habitats and species within Natura 2000 sites at favourable conservation condition will contribute to the overall maintenance of favourable conservation status of those habitats and species at a national level.

Favourable conservation status of a habitat is achieved when:

- its natural range, and area it covers within that range, are stable or increasing, and
- the specific structure and functions which are necessary for its long-term maintenance
- exist and are likely to continue to exist for the foreseeable future, and
- the conservation status of its typical species is favourable.

The favourable conservation status of a species is achieved when:

• population dynamics data on the species concerned indicate that it is maintaining itself on a long-term basis as a viable component of its natural habitats, and

• the natural range of the species is neither being reduced nor is likely to be reduced for the foreseeable future, and

• there is, and will probably continue to be, a sufficiently large habitat to maintain its populations on a long-term basis.

Notes/Guidelines:

1. The targets given in these conservation objectives are based on best available information at the time of writing. As more information becomes available, targets for attributes may change. These will be updated periodically, as necessary.

2. An appropriate assessment based on these conservation objectives will remain valid even if the targets are subsequently updated, providing they were the most recent objectives available when the assessment was carried out. It is essential that the date and version are included when objectives are cited.

3. Assessments cannot consider an attribute in isolation from the others listed for that habitat or species, or for other habitats and species listed for that site. A plan or project with an apparently small impact on one attribute may have a significant impact on another.

4. Please note that the maps included in this document do not necessarily show the entire extent of the habitats and species for which the site is listed. This should be borne in mind when appropriate assessments are being carried out.

5. When using these objectives, it is essential that the relevant backing/supporting documents are consulted, particularly where instructed in the targets or notes for a particular attribute.

Qualifying Interests

* indicates	a priority habitat under the Habitats Directive
002034	Connemara Bog Complex SAC
1065	Marsh Fritillary Euphydryas aurinia
1106	Salmon Salmo salar
1150	Coastal lagoonsE
1170	Reefs
1355	Otter Lutra lutra
1833	Slender Naiad Najas flexilis
3110	Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)
3130	Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or Isoeto-Nanojuncetea
3160	Natural dystrophic lakes and ponds
3260	Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation
4010	Northern Atlantic wet heaths with Or & A for a f
4030	European dry heaths
6410	<i>T [ðj ãæ</i> meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae)
7130	Blanket bogs (* if active bog)
7140	Transition mires and quaking bogs
7150	Depressions on peat substrates of the Rhynchosporion
7230	Alkaline fens
91A0	Old sessile oak woods with $q \not \sim a$ nd Ó $/ \& q \ in the British Isles$

Please note that this SAC overlaps with Connemara Bog Complex SPA (004181). It adjoins Lough Corrib SAC (000297), Maumturk Mountains SAC (002008), The Twelve Bens/Garraun Complex SAC (002031) and Kilkieran Bay and Islands SAC (002111). See map 2. The conservation objectives for this site should be used in conjunction with those for the overlapping and adjoining sites as appropriate.

Supporting documents, relevant reports & publications

Supporting documents, NPWS reports and publications are available for download from: www.npws.ie/Publications

NPWS Documents

Year :	1984		
Title :	The vegetation of Irish lakes		
Author :	Heuff, H.		
Series :	Unpublished report to NPWS		
Year :	1987		
Title :	Survey to locate lowland blanket bogs of scientific interest in Connemara, Co. Galway		
Author :	Douglas, C.; Grogan, H.		
Series :	Unpublished report to the Wildlife Service		
Year :	1989		
Title :	A survey to locate blanket bogs in Co. Galway. Part 2		
Author :	Douglas, C.; Garvey, L.; Kelly, L.; O'Sullivan, A.		
Series :	Unpublished report to the Wildlife Service		
Year :	1998		
Title :	Survey of Irish coastal lagoons, 1996 and 1998		
Author :	Healy, B.; Roden, C.; Oliver, G.; Good, J.		
Series :	Unpublished report to NPWS		
Year :	2006		
Title :	Otter survey of Ireland 2004/2005		
Author :	Bailey, M.; Rochford, J.		
Series :	Irish Wildlife Manual No. 23		
Year :	2007		
Title :	Supporting documentation for the Habitats Directive Conservation Status Assessment - backing documents. Article 17 forms and supporting maps		
Author :	NPWS		
Series :	Unpublished report to NPWS		
Year :	2007		
Title :	Inventory of Irish coastal lagoons (version 2)		
Author :	Oliver, G.		
Series :	Unpublished report to NPWS		
Year :	2008		
Title :	National survey of native woodlands 2003-2008		
Author :	Perrin, P.M.; Martin, J.; Barron, S.; O'Neill, F.H.; McNutt, K.E.; Delaney, A.		
Series :	Unpublished Report to NPWS		
Year :	2009		
Title :	NS II freshwater pearl mussel sub-basin management plans: Report on biological monitoring of surface water quality in the Owenriff catchment (Corrib sub-catchment), Co. Galway		
Author :	Williams, L.		
Series :	Unpublished report to NPWS		
Year :	2010		
Title :	A provisional inventory of ancient and long-established woodland in Ireland		
Author :	Perrin, P.M.; Daly, O.H.		
Series :	Irish Wildlife Manual No. 46		

Page 5 of 42

Year :	2013		
Title :	National otter survey of Ireland 2010/12		
Author :	Reid, N.; Hayden, B.; Lundy, M.G.; Pietravalle, S.; McDonald, R.A.; Montgomery, W.I.		
Series :	Irish Wildlife Manual No. 76		
Year :	2013		
Title :	Irish semi-natural grasslands survey 2007-2012		
Author :	O'Neill, F.H.; Martin, J.R.; Devaney, F.M.; Perrin, P.M.		
Series :	Irish Wildlife Manual No. 78		
Year :	2013		
Title :	A survey of the benthic macrophytes of three hard-water lakes: Lough Bunny, Lough Carra and Lough Owel		
Author :	Roden, C.; Murphy, P.		
Series :	Irish Wildlife Manual No. 70		
Year :	2013		
Title :	The status of EU protected habitats and species in Ireland. Volume 2. Habitats assessments		
Author :	NPWS		
Series :	Conservation assessments		
Year :	2014		
Title :	Guidelines for a national survey and conservation assessment of upland vegetation and habitats in Ireland, Version 2.0		
Author :	Perrin, P.M.; Barron, S.J.; Roche, J.R.; O'Hanrahan, B.		
Series :	Irish Wildlife Manual No. 79		
Year :	2015		
Title :	Habitats Directive Annex I lake habitats: a working interpretation for the purposes of site- specific conservation objectives and Article 17 reporting		
Author :	O Connor, Á.		
Series :	Unpublished document by NPWS		
Year :	2015		
Title :	Connemara Bog Complex SAC (site code: 2034) Conservation objectives supporting document- coastal lagoons V1		
Author :	NPWS		
Series :	Conservation objectives supporting document		
Year :	2015		
Title :	Connemara Bog Complex SAC (site code: 2034) Conservation objectives supporting document- marine habitats V1		
Author :	NPWS		
Series :	Conservation objectives supporting document		
Year :	2015		
Title :	Connemara Bog Complex SAC (site code: 2034) Conservation objectives supporting document- <i>Najas flexilis</i> V1		
Author :	NPWS		
Series :	Conservation objectives supporting document		

Other References

Year :	1982
Title :	Otter survey of Ireland
Author :	Chapman, P.J.; Chapman, L.L.
Series :	Unpublished report to Vincent Wildlife Trust

Version 1

Year :	1982		
Title :	Eutrophication of waters. Monitoring assessment and control		
Author :	OECD		
Series :	OECD, Paris		
Year :	1991		
Title :	The spatial organization of otters (Lutra lutra) in Shetland		
Author :	Kruuk, H.; Moorhouse, A.		
Series :	J. Zool, 224: 41-57		
Year :	1991		
Title :	Records of aquatic plants from Connemara and the Burren		
Author :	Preston, C.D.; Stewart, N.F.; Webster, S.D.		
Series :	Irish Naturalists' Journal 23(11): 464-467		
Year :	1997		
Title :	The BioMar biotope viewer: a guide to marine habitats, fauna and flora in Britain and Ireland		
Author :	Picton, B.E.; Costello, M.J.		
Series :	Environmental Science Unit, Trinity College Dublin		
Year :	1999		
Title :	Diet of otters (Lutra lutra) on Inishmore, Aran Islands, west coast of Ireland		
Author :	Kingston, S.; O'Connell, M.; Fairley, J.S.		
Series :	Biol & Environ Proc R Ir Acad B 99B:173-182		
Year :	2000		
Title :	Colour in Irish lakes		
Author :	Free, G.; Allott, N.; Mills, P.; Kennelly, C.; Day, S.		
Series :	Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie. 27: 2620-2623		
Year :	2001		
Title :	Aquatic plants in Britain and Ireland		
Author :	Preston, C.D.; Croft, J.M.		
Series :	Harley Books, Colchester		
Year :	2002		
Title :	Reversing the habitat fragmentation of British woodlands		
Author :	Peterken, G.		
Series :	WWF-UK, London		
Year :	2002		
Title :	Deterioration of Atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation		
Author :	Arts, G.H.P.		
Series :	Aquatic Botany, 73: 373-393		
Year :	2003		
Title :	Ecology of watercourses characterised by Ranunculion fluitantis and Callitricho-Batrachion Vegetation		
Author :	Hatton-Ellis, I.W.; Grieve, N.		
Series :	Conserving Natura 2000 Rivers Ecology Series No. 11. English Nature, Peterborough		
Tear:			
Author :	Wingtield, R.A.; Murphy, K.J.; Hollingsworth, P.; Gaywood, M.J.		

Page 7 of 42

Year :	2006		
Title :	Otters - ecology, behaviour and conservation		
Author :	Kruuk, H.		
Series :	Oxford University Press		
Year :	2006		
Title :	A reference-based typology and ecological assessment system for Irish lakes. Preliminary investigations. Final report. Project 2000-FS-1-M1 Ecological assessment of lakes pilot study to establish monitoring methodologies EU (WFD)		
Author :	Free, G.; Little, R.; Tierney, D.; Donnelly, K.; Coroni, R.		
Series :	EPA, Wexford		
Year :	2009		
Title :	The identification, characterization and conservation value of isoetid lakes in Ireland		
Author :	Free G.; Bowman, J.; McGarrigle, M.; Little, R.; Coroni, R.; Donnelly, K.; Tierney, D.; Trodd, W.		
Series :	Aquatic Conservation: Marine and Freshwater Ecosystems 19 (3): 264–273		
Year :	2010		
Title :	Second draft Owenriff freshwater pearl mussel sub-basin management plan (2009-2015). March 2010		
Author :	Department of the Environment, Heritage and Local Government		
Series :	Unpublished report		
Year :	2012		
Title :	Subtidal reef survey of Salt Lake, Connemara Bog Complex		
Author :	MERC		
Series ·	Unpublished report to the Marine Institute and NPWS		
	Unpublished report to the Marine Institute and NPWS		
Year :	2012		
Year : Title :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes		
Year : Title : Author :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J.		
Year : Title : Author : Series :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork		
Year : Title : Author : Series : Year :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013		
Year : Title : Author : Series : Year : Title :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2		
Year : Title : Author : Series : Year : Title : Author :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A.		
Year : Title : Author : Series : Year : Title : Author : Series : Year :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency		
Year : Title : Author : Series : Year : Title : Author : Series : Year : Year : Title : Series : Year :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013		
Year : Title : Author : Series : Year : Title : Author : Series : Year : Title : Title :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies		
Year : Title : Author : Series : Year : Title : Author : Series : Year : Title : Author : Series : Year : Author : Series : Year : Year : Author : Series : Year : Year : Author : Series : Year : Year : Author : Series : Year :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K.		
Year : Title : Author : Series : Year : Yea	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford		
Year : Title : Author : Series : Year : Title : Author : Series : Year : Title : Author : Series : Year :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013		
Year : Title : Author : Series : Year : Title : Series : Year : Title :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013 Interpretation manual of European Union habitats- Eur 28		
Year : Title : Author : Series : Year : Author : Series : Year : Title : Author : Series : Year : Author : Series : Year : Title : Author : Series : Year : Title : Author : Series : Year : Year : Author : Series : Year : Title : Author :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013 Interpretation manual of European Union habitats- Eur 28 European Commission- DG Environment		
Year : Title : Author : Series : Year : Year : Series : Year : Year : Series : Year : Series : Year : Series :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013 Interpretation manual of European Union habitats- Eur 28 European Commission- DG Environment Reference document		
Year : Title : Author : Series : Year : Title : Author : Series : Year : Title : Author : Series : Year : Title : Author : Series : Year :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013 Interpretation manual of European Union habitats- Eur 28 European Commission- DG Environment Reference document in prep.		
Year : Title : Author : Series : Year : Title :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013 Interpretation manual of European Union habitats- Eur 28 European Commission- DG Environment Reference document in prep. Monitoring of hard-water lakes in Ireland using charophytes and other macrophytes		
Year : Title : Author : Series : Year : Title : Author :	2012 The impact of conifer plantation forestry on the ecology of peatland lakes Drinan, T.J. Unpublished PhD thesis, University College Cork 2013 Monitoring and assessment of Irish lagoons for the purposes of the EU Water Framework Directive, 2009-2011. Parts 1 and 2 Roden, C.M; Oliver, G.A. Unpublished report to the Environmental Protection Agency 2013 Management strategies for the protection of high status water bodies Ní Chatháin, B.; Moorkens, E.; Irvine, K. Strive Report Series No. 99. EPA, Wexford 2013 Interpretation manual of European Union habitats- Eur 28 European Commission- DG Environment Reference document in prep. Monitoring of hard-water lakes in Ireland using charophytes and other macrophytes Roden, C.; Murphy, P.		

Spatial data sources

Year :	Revision 2011		
Title :	Inventory of Irish Coastal Lagoons. Version 3		
GIS Operations :	Clipped to SAC boundary		
Used For :	1150 (map 3)		
Year :	Interpolated 2015		
Title :	1994, 1995 BioMar surveys; 2011 subtidal reef survey		
GIS Operations :	Polygon feature classes from marine community types base data sub-divided based on interpolation of marine survey data. Expert opinion used as necessary to resolve any issues arising		
Used For :	1170, marine community types (maps 4 and 5)		
Year :	2005		
Title :	OSi Discovery series vector data		
GIS Operations :	High water mark (HWM) and low water mark (LWM) polyline feature classes converted into polygon feature classes and combined; EU Annex I Saltmarsh and Coastal data erased out if present		
Used For :	Marine community types base data (map 5)		
Year :	2008		
Title :	OSi 1:5000 IG vector dataset		
GIS Operations :	WaterPolygons feature class clipped to the SAC boundary. Expert opinion used to identify Annex I habitat and to resolve any issues arising		
Used For :	3110, 3160 (map 6)		
Year :	Revision 2012		
Title :	Margaritifera Sensitive Areas		
GIS Operations :	Relevant catchment boundaries identified. Expert opinion used as necessary to resolve any issues arising		
Used For :	3260 (map 7)		
Year :	Revision 2010		
Title :	National Survey of Native Woodlands 2003-2008. Version 1		
GIS Operations :	QIs selected; clipped to SAC boundary. Expert opinion used as necessary to resolve any issues arising		
Used For :	91A0 (map 8)		
Year :	2013		
Title :	Najas flexilis data		
GIS Operations :	Lake habitat for species clipped to SAC boundary		
Used For :	1833 (map 9)		

1150 Coastal lagoons

To maintain the favourable conservation condition of Coastal lagoons in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable, subject to slight natural variation. Favourable reference area 151.4ha. See map 3	Area calculated from spatial data derived from Oliver (2007) for IL061 (Loch Doire Bhanbh), IL062 (Loch an tSáile) and IL063 (Loch Conaortha). Area of Ardbear Salt Lake calculated using the same methodology. See lagoons supporting document for further details
Habitat distribution	Occurrence	No decline, subject to natural processes. See map 3	IL061 (Loch Doire Bhanbh), IL062 (Loch an tSáile) and IL063 (Loch Conaortha) listed in Oliver (2007) and Ardbear Salt Lake in Healy et al. (1998). See lagoons supporting document for further details
Salinity regime	Practical salinity units (psu)	Median annual salinity and temporal variation within natural ranges	Loch Doire Bhanbh and Ardbear Salt Lake are recorded as polyhaline lagoons, Loch an tSáile as oligohaline/mesohaline and Loch Conaortha as mesohaline. See lagoons supporting document for further details
Hydrological regime	Metres	Annual water level fluctuations and minima within natural ranges	Maximum depth of Loch Doire Bhanbh is recorded as 3m, Loch an tSáile as 13m, Loch Conaortha as 5m; the average depth of Ardbear Salt Lake is between 4 -6m with a maximum depth of 27m. See lagoons supporting document for further details
Barrier: connectivity between lagoon and sea	Permeability	Appropriate hydrological connections between lagoons and sea, including where necessary, appropriate management	Loch Doire Bhanbh is described as a saltmarsh lagoon, Loch an tSáile and Loch Conaortha as rock/peat barrier lagoons and Ardbear Salt Lake as having a rock barrier. See lagoons supporting document for further details
Water quality: Chlorophyll <i>a</i>	µg/L	Annual median chlorophyll a within natural ranges and less than 5µg/L	Target based on Roden and Oliver (2013). See lagoons supporting document for further details
Water quality: Molybdate Reactive Phosphorus (MRP)	mg/L	Annual median MRP within natural ranges and less than 0.1mg/L	Target based on Roden and Oliver (2013). See lagoons supporting document for further details
Water quality: Dissolved Inorganic Nitrogen (DIN)	mg/L	Annual median DIN within natural ranges and less than 0.15mg/L	Target based on Roden and Oliver (2013). See lagoons supporting document for further details
Depth of macrophyte colonisation	Metres	Macrophyte colonisation to at least 4m depth	It is expected that macrophyte colonisation would extend down to the full depths of Loch Doire and Loch Conaortha. In Loch an tSáile and Ardbear Salt Lake macrophytes would be expected to extend to 4m depth; thereafter the dark water colour prohibits growth. See lagoons supporting document for further details
Typical plant species	Number and m ²	Maintain number and extent of listed lagoonal specialists, subject to natural variation	Species listed in Oliver (2007),Healy et al. (1997) and MERC (2012). See lagoons supporting document for further details
Typical animal species	Number	Maintain listed lagoon specialists, subject to natural variation	Species listed in Oliver (2007) and Healy et al. (1997). See lagoons supporting document for further details. The conservation objective and supporting document for reefs (1170) gives information on the <i>Serpula vermicularis</i> -dominated community complex
Negative indicator species	Number and percentage cover	Negative indicator species absent or under control	Low salinity, shallow water and elevated nutriennt levels increase the threat of unnatural encroachment by reedbeds. See lagoons supporting document for further details

Page 10 of 42

1170 Reefs

To maintain the favourable conservation condition of Reefs in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	The permanent habitat area is stable or increasing, subject to natural processes. See map 4	Habitat area estimated as 6ha from a 2011 subtidal reef survey (MERC, 2012) and an intertidal walkover in 2014
Distribution	Occurrence	The distribution of reefs is stable or increasing, subject to natural processes. See map 4	Based on information from a 2011 subtidal reef survey (MERC, 2012) and an intertidal walkover in 2014
Community extent	Hectares	Maintain the extent of the <i>Serpula vermicularis</i> - dominated community complex, subject to natural processes. See map 5	The likely extent of the <i>Serpula vermicularis</i> - dominated community complex was derived from dive surveys undertaken in 2011 (MERC, 2012). See marine supporting document for further details
Community structure	Biological composition	Conserve the high quality of the <i>Serpula</i> <i>vermicularis</i> -dominated community complex, subject to natural processes	Based on 2011 diver observation (MERC, 2012). See marine supporting document for further details
Community structure	Biological composition	Conserve the following community type in a natural condition: Intertidal reef community complex. See map 5	Based on information from 1994 and 1995 BioMar surveys (Picton and Costello, 1997) and an intertidal walkover in 2014. See marine supporting document for further details

3110 Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)

To maintain the favourable conservation condition of Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae) in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	This SAC has a very large number of lakes and ponds (more than 1,100, based on 1:5,000 OSi data). Most are surrounded by peatland and are likely to contain lake habitats 3110 and/or 3160. Records for <i>Najas flexilis</i> indicates lake habitat 3130 also occurs in some lakes. The exact distribution of habitat 3110 in the site is unknown, but it is considered to be widespread and of high conservation value, particularly in Roundstone Blanket Bog (see indicative distribution in map 6). 3110 lakes in the SAC typically have shallow margins, often with rock outcrops along the shore, and a mixed rocky/peaty/sandy substratum. Two measures of extent should be used: 1. the area of the lake itself and; 2. the extent of the vegetation communities/zones that typify the habitat. Further information relating to all attributes is provided in the lake habitats supporting document for the purposes of site-specific conservation objectives and Article 17 reporting (O Connor, 2015)
Habitat distribution	Occurrence	No decline, subject to natural processes	As noted above, it is likely that the habitat is widespread and of high conservation value in the SAC (see map 6)
Typical species	Occurrence	Typical species present, in good condition, and demonstrating typical abundances and distribution	For lists of typical plant species, see Article 17 habitat assessment for 3110 (NPWS, 2013) and the lake habitats supporting document (O Connor, 2015). The only known Irish sites for <i>Luronium</i> <i>natans</i> are in the SAC, and include at least three lakes (Rich et al., 1995; Curtis et al., 2012). The status of <i>Luronium natans</i> in Ireland is currently uncertain, as it is unclear whether it is native to these sites, or was introduced. The protected <i>Pilularia globulifera</i> is known from a number of lakes in the SAC and is likely to be widespread
Vegetation composition: characteristic zonation	Occurrence	All characteristic zones should be present, correctly distributed and in good condition	The characteristic zonation of lake habitat 3140 has been described (Roden and Murphy, 2013; in prep.), however significant further work is necessary to describe the characteristic zonation and other spatial patterns in the remaining four Annex I lake habitats
Vegetation distribution: maximum depth	Metres	Maintain maximum depth of vegetation, subject to natural processes	The maximum depth of vegetation is likely to be specific to the lake shoreline in question. An indicative target of >6m has been developed for hard water lakes (3140) (see Roden and Murphy, 2013; in prep.). Indicative targets will be developed for the other lake habitats with time. Lakes in the SAC typically have very clear water and, therefore, maximum depth is expected to be large
Hydrological regime: water level fluctuations	Metres	Maintain appropriate natural hydrological regime necessary to support the habitat	Fluctuations in lake water level are typical in Ireland, but can be amplified by activities such as abstraction and drainage. Increased water level fluctuations can increase wave action, up-root vegetation, increase turbidity, alter the substratum and lead to release of nutrients from the sediment. The hydrological regime of the lakes must be maintained so that the area, distribution and depth of the lake habitat and its constituent/characteristic vegetation zones and communities are not reduced

Lake substratum quality	Various	Maintain appropriate substratum type, extent and chemistry to support the vegetation	Research is required to further characterise the substratum types (particle size and origin) and substratum quality (notably pH, calcium, iron and nutrient concentrations) favoured by each of the five Annex I lake habitats in Ireland. It is likely that lake habitat 3110 is associated with a range of nutrient-poor substrates, from stones, cobble and gravel, through sands, silt, clay and peat. Substratum particle size is likely to vary with depth and along the shoreline within a single lake
Water quality: transparency	Metres	Maintain appropriate Secchi transparency. There should be no decline in Secchi depth/transparency	Transparency relates to light penetration and, hence, to the depth of colonisation of vegetation. It can be affected by phytoplankton blooms, water colour and turbidity. A target has been set for hard water lakes (3140), however specific targets have yet to be established for the remaining lake habitats. Habitat 3110 is associated with very clear water. The OECD fixed boundary system set transparency targets for oligotrophic lakes of \geq 6m annual mean Secchi disk depth, and \geq 3m annual minimum Secchi disk depth. Free et al. (2009) found high isoetid abundance in lakes with Secchi depths of more than 3m
Water quality: nutrients	μg/l P; mg/l N	Maintain the concentration of nutrients in the water column to sufficiently low levels to support the habitat and its typical species	As a nutrient poor habitat, oligotrophic and Water Framework Directive (WFD) 'high' status targets apply. Where a lake has nutrient concentrations that are lower than these targets, there should be no decline within class, i.e. no upward trend in nutrient concentrations. For lake habitat 3110, annual average TP concentration should be $\leq 10\mu g/I$ TP, average annual total ammonia concentration should be $\leq 0.040mg/I$ N and annual 95th percentile for total ammonia should be $\leq 0.090mg/I$ N. See also The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water quality: phytoplankton biomass	µg/l Chlorophyll <i>a</i>	Maintain appropriate water quality to support the habitat, including high chlorophyll status	Oligotrophic and WFD 'high' status targets apply to the lake habitat 3110. Where a lake has a chlorophyll <i>a</i> concentration that is lower than this target, there should be no decline within class, i.e. no upward trend in phytoplankton biomass. The average growing season (March-October) chlorophyll <i>a</i> concentration must be < 5.8μ g/l. The annual average chlorophyll a concentration should be < 2.5μ g/l and the annual peak chlorophyll a concentration should be $\leq 8.0\mu$ g/l. See also The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water quality: phytoplankton composition	EPA phytoplankton composition metric	Maintain appropriate water quality to support the habitat, including high phytoplankton composition status	The EPA has developed a phytoplankton composition metric for nutrient enrichment of Irish lakes. As for other water quality indicators, habitat 3110 requires WFD high status
Water quality: attached algal biomass	Algal cover and EPA phytobenthos metric	Maintain trace/ absent attached algal biomass (<5% cover) and high phytobenthos status	Nutrient enrichment can favour epiphytic and epipelic algae that can out-compete the submerged vegetation. The cover abundance of attached algae in the oligotrophic soft water habitat should, therefore, be trace/ absent (<5% cover). EPA phytobenthos can be used as an indicator of changes in attached algal biomass. As for other water quality indicators, habitat 3110 requires high phytobenthos status
Water quality: macrophyte status	EPA macrophyte metric (The Free Index)	Maintain high macrophyte status	Nutrient enrichment can favour more competitive submerged macrophyte species that out-compete the typical and characteristic species for the lake habitat. The EPA monitors macrophyte status for Water Framework Directive purposes using the 'Free Index'. The target for lake habitat 3110 is high status or an Ecological Quality Ratio (EQR) for lake macrophytes of ≥ 0.90 , as defined in Schedule Five of the European Communities Environmental Objectives (Surface Waters) Regulations 2009

Acidification status	pH units, mg/l	Maintain appropriate water and sediment pH, alkalinity and cation concentrations to support the habitat, subject to natural processes	Acidification can impact on species abundance and composition in soft water lake habitats. In Europe, acidification of isoetid lakes can lead to loss of isoetids and dominance by submerged <i>Sphagnum</i> mosses and <i>Juncus bulbosus</i> (Arts, 2002). The specific requirements of lake habitat 3110, in terms of water and sediment pH, alkalinity and cation concentration, have not been determined. For this habitat, and adopting a precautionary approach based on Arts (2002), minimum pH should not be <5.5 pH units. Maximum pH should be <9.0 pH units, in line with the surface water standards established for soft waters (where water hardness is ≤100mg/I CaCO3). See Schedule Five of the European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water colour	mg/l PtCo	Maintain appropriate water colour to support the habitat	Increased water colour and turbidity decrease light penetration and can reduce the area of available habitat for lake macrophytes, particularly at the lower euphotic depths. The primary source of increased water colour in Ireland is disturbance to peatland. No habitat-specific or national standards for water colour currently exist. Studies have shown median colour concentrations in Irish lakes of 38mg/l PtCo (Free et al., 2000) and 33mg/l PtCo (Free et al., 2006). It is likely that the water colour in all Irish lake habitats would naturally be <50mg/l PtCo. Water colour can be very low (<20mg/l PtCo or even <10mg/l PtCo) in lake habitat 3110, where the peatland in the lake's catchment is intact
Dissolved organic carbon (DOC)	mg/l	Maintain appropriate organic carbon levels to support the habitat	Dissolved (and particulate) organic carbon (OC) in the water column is linked to water colour and acidification (organic acids). Increasing DOC in water has been documented across the Northern Hemisphere, including afforested peatland catchments in Ireland. Damage and degradation of peatland, leading to decomposition of peat is likely to be the predominant source of OC in Ireland. OC in water promotes decomposition by fungi and bacteria that, in turn, releases dissolved nutrients. The increased biomass of decomposers can also impact directly on the characteristic lake communities through shading, competition, etc.
Turbidity	nephelometric turbidity units/ mg/I SS/ other appropriate units	Maintain appropriate turbidity to support the habitat	Turbidity can significantly affect the quantity and quality of light reaching rooted and attached vegetation and can, therefore, impact on lake habitats. The settlement of higher loads of inorganic or organic material on lake vegetation communities may also have impacts on sensitive, delicate species. Turbidity can increase as a result of re-suspension of material within the lake, higher loads entering the lake, or eutrophication. Turbidity measurement and interpretation is challenging. As a result, it is likely to be difficult to set habitat-specific targets for turbidity in lakes
Fringing habitat	Area	Maintain the area and condition of fringing habitats necessary to support the natural structure and functioning of habitat 3110	Most lake shorelines have fringing habitats of reedswamp, other swamp, fen, marsh or wet- woodland that intergrade with and support the structure and functions of the lake habitat. In this SAC, 3110 lakes are most likely to be fringed by poor fen, flush, blanket bog and heath communities. Equally, fringing habitats are dependent on the lake, particularly its water levels, and support wetland communities and species of conservation concern. Many of the fringing wetland habitats support higher invertebrate and plant species richness than the lake habitats themselves

Version 1

Page 14 of 42

3130 Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or Isoeto-Nanojuncetea

To maintain the favourable conservation condition of Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or Isoeto-Nanojuncetea in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	This SAC has a very large number of lakes and ponds (>1,100, based on 1:5,000 OSi data). Most are likely to contain lake habitats 3110 and/or 3160; however, records of <i>Najas flexilis</i> demonstrate that lake habitat 3130 also occurs. The indicative distribution of habitat 3130 in the SAC is based on records for this characteristic species (see maps 6 and 9). Potential 3130 lakes are also identified overlying lake marbles or the Metagabbro Suite. The habitat is likely to be more widespread, as a result of basic influences from such geologies or coastal sands. Two measures of extent should be used: 1. the area of the lake itself and; 2. the extent of the vegetation communities/zones that typify the habitat. Further information relating to all attributes is provided in the lake habitats supporting document for the purposes of site-specific conservation objectives and Article 17 reporting (O Connor, 2015) and the <i>Najas flexilis</i> supporting document
Habitat distribution	Occurrence	No decline, subject to natural processes	The characteristics and distribution of habitat 3130 in Ireland are not yet fully understood. The Annex II macrophyte slender naiad (<i>Najas flexilis</i>) is considered to be characteristic of the habitat and has been recorded from 11 lakes across the SAC
Typical species	Occurrence	Typical species present, in good condition, and demonstrating typical abundances and distribution	For lists of typical plant species, see Article 17 habitat assessment for lake habitat 3130 (NPWS, 2013b), O Connor (2015) and the <i>Najas flexilis</i> supporting document
Vegetation composition: characteristic zonation	Occurrence	All characteristic zones should be present, correctly distributed and in good condition	The characteristic zonation of lake habitat 3140 has been described (Roden and Murphy, 2013; in prep.), however significant further work is necessary to describe the characteristic zonation and other spatial patterns in the remaining four lake habitats
Vegetation distribution: maximum depth	Metres	Maintain maximum depth of vegetation, subject to natural processes	The maximum depth of vegetation is likely to be specific to the lake shoreline in question. An indicative target of >6m has been developed for hard water lakes (3140) (see Roden and Murphy, 2013; in prep.). Indicative targets will be developed for the other lake habitats with time
Hydrological regime: water level fluctuations	Metres	Maintain appropriate natural hydrological regime necessary to support the habitat	Fluctuations in lake water level are typical in Ireland, but can be amplified by activities such as abstraction and drainage. Increased water level fluctuations can increase wave action, up-root vegetation, increase turbidity, alter the substratum and lead to release of nutrients from the sediment. The hydrological regime of the lakes must be maintained so that the area, distribution and depth of the lake habitat and its constituent/characteristic vegetation zones and communities are not reduced

Lake substratum quality	Various	Maintain appropriate substratum type, extent and chemistry to support the vegetation	Research is required to further characterise the substratum types (particle size and origin) and substratum quality (notably pH, calcium, iron and nutrient concentrations) favoured by each of the five Annex I lake habitats in Ireland. It is likely that the soft water lake habitat with base-rich influences (3130) is associated with a range of substrate types that are more productive/base-rich relative to the substratum of 3110. Substratum particle size is likely to vary with depth and along the shoreline within a single lake, however it should be noted that <i>Najas flexilis</i> is typically found on soft substrata of mud, silt or fine sand (Preston and Croft, 2001, Roden, 2002; 2004)
Water quality: transparency	Metres	Maintain appropriate Secchi transparency. There should be no decline in Secchi depth/transparency	Transparency relates to light penetration and, hence, to the depth of colonisation of vegetation. It can be affected by phytoplankton blooms, water colour and turbidity. A target has been set for hard water lakes (3140), however specific targets have yet to be established for the remaining lake habitats. Habitat 3130 is associated with clear water, as evidenced by the growth of the character species <i>Najas flexilis</i> at depths of up to 10m. The OECD fixed boundary system set transparency targets for oligotrophic lakes of $\geq 6m$ annual mean Secchi disk depth, and $\geq 3m$ annual minimum Secchi disk depth. There is likely to be some variation across lakes with habitat 3130 in Secchi depth and site-specific conditions should also be considered
Water quality: nutrients	μg/l Ρ; mg/l Ν	The concentration of nutrients in the water column should be sufficiently low to prevent changes in species composition or habitat condition	3130 is associated with high water quality, with naturally low dissolved nutrients. It is naturally more productive than 3110, probably reflecting higher concentrations of nutrients such as calcium, rather than P alone. 3130 may reach favourable condition slightly above the oligotrophic boundary for nutrients, but in the absence of habitat-specific targets, the targets are Water Framework Directive) WFD 'High Status' or oligotrophic (OECD, 1982). The "good-moderate" boundary is too enriched to support the habitat. Annual average TP concentration should be $\leq 10\mu g/I$ TP, average annual total ammonia should be $\leq 0.040mg/I$ N and annual 95th percentile for total ammonia should be $\leq 0.090mg/I$ N. Where nutrient concentrations are lower, there should be no upward trend in nutrient concentrations. See also The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water quality: phytoplankton biomass	μg/l Chlorophyll <i>a</i>	Maintain appropriate water quality to support the habitat, including high chlorophyll <i>a</i> status	3130 is associated with high water quality, and naturally low algal growth. As for nutrients, the targets are WFD 'High Status' or oligotrophic (OECD, 1982). The "good-moderate" boundary is too enriched to support the habitat. The average growing season (March-October) chlorophyll a concentration must be <5.8µg/l. The annual average chlorophyll <i>a</i> should be <2.5µg/l and the annual peak chlorophyll <i>a</i> should be <8.0µg/l. Where a lake has a chlorophyll <i>a</i> concentration that is lower than this target, there should be no decline within class, i.e. no upward trend in phytoplankton biomass. See also The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water quality: phytoplankton composition	EPA phytoplankton composition metric	Maintain appropriate water quality to support the habitat, including high phytoplankton composition status	The EPA has developed a phytoplankton composition metric for nutrient enrichment of Irish lakes. As for other water quality indicators, habitat 3130 is considered to require WFD high status

Water quality: attached algal biomass	Algal cover and EPA phytobenthos metric	Maintain trace/ absent attached algal biomass (< 5% cover) and high phytobenthos status	Nutrient enrichment can favour epiphytic and epipelic algae that can out-compete the submerged vegetation. The cover abundance of attached algae in lake habitat 3130 should, therefore, be trace/ absent (<5% cover). EPA phytobenthos can be used as an indicator of changes in attached algal biomass. As for other water quality indicators, habitat 3130 requires high phytobenthos status
Water quality: macrophyte status	EPA macrophyte metric (The Free Index)	Maintain high macrophyte status	Nutrient enrichment can favour more competitive submerged macrophyte species that out-compete the typical and characteristic species for the soft water lake habitat with base-rich influences (3130). The EPA monitors macrophyte status for Water Framework Directive purposes using the 'Free Index'. The target for habitat 3130 is high status or an Ecological Quality Ratio (EQR) for lake macrophytes of \geq 0.90, as defined in Schedule Five of the European Communities Environmental Objectives (Surface Waters) Regulations 2009
Acidification status	pH units; mg/l	Maintain appropriate water and sediment pH, alkalinity and cation concentrations to support the habitat, subject to natural processes	Acidification can impact on species abundance and composition in habitat 3130. Acidification reduces the abundance and reproductive capacity of <i>Najas</i> <i>flexilis</i> (Wingfield et al., 2004). The specific requirements of habitat 3130, in terms of water and sediment pH, alkalinity and cation concentration, have not been determined. In line with targets for Najas flexilis, median pH values should be greater than 7 pH units. Water and sediment alkalinity and concentrations of cations (notably calcium) should be appropriate to the habitat. The target for WFD Acidification/Alkalisation status is high. Maximum pH should be <9.0 pH units, in line with the surface water standards. See The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water colour	mg/l PtCo	Maintain appropriate water colour to support the habitat	Increased water colour and turbidity decrease light penetration and can reduce the area of available habitat for lake macrophytes, particularly at the lower euphotic depths. The primary source of increased water colour in Ireland is disturbance to peatland. No habitat-specific or national standards for water colour currently exist. Studies have shown median colour concentrations in Irish lakes of 38mg/l PtCo (Free, et al., 2000) and 33mg/l PtCo (Free et al., 2006). It is likely that the water colour in all Irish lake habitats would naturally be <50mg/l PtCo. Water colour is generally <30mg/l PtCo or, more naturally, <20mg/l PtCo in lakes with habitat 3130, where the peatland in the lake's catchment is intact
Dissolved organic carbon (DOC)	mg/l	Maintain appropriate organic carbon levels to support the habitat	Dissolved (and particulate) organic carbon (OC) in the water column is linked to water colour and acidification (organic acids). Increasing DOC in water has been documented across the Northern Hemisphere, including afforested peatland catchments in Ireland. Damage and degradation of peatland, leading to decomposition of peat is likely to be the predominant source of OC in Ireland. OC in water promotes decomposition by fungi and bacteria that, in turn, releases dissolved nutrients. The increased biomass of decomposers can also impact directly on the characteristic lake communities through shading, competition, etc.

Turbidity	Nephelometric turbidity units/ mg/l SS/ other appropriate unit	Maintain appropriate turbidity to support the habitat	Turbidity can significantly affect the quantity and quality of light reaching rooted and attached vegetation and can, therefore, impact on lake habitats. The settlement of higher loads of inorganic or organic material on lake vegetation communities may also have impacts on sensitive, delicate species. Turbidity can increase as a result of re-suspension of material within the lake, higher loads entering the lake, or eutrophication. Turbidity measurement and interpretation is challenging. As a result, it is likely to be difficult to set habitat-specific targets for turbidity in lakes
Fringing habitat: area	Hectares	Maintain the area and condition of fringing habitats necessary to support the natural structure and functioning of habitat 3130	Most lake shorelines have fringing habitats of reedswamp, other swamp, fen, marsh or wet- woodland that intergrade with and support the structure and functions of the lake habitat. Equally, fringing habitats are dependent on the lake, particularly its water levels, and support wetland communities and species of conservation concern. Many of the fringing wetland habitats support higher invertebrate and plant species richness than the lake habitats themselves

Page 18 of 42

3160 Natural dystrophic lakes and ponds

To maintain the favourable conservation condition of Natural dystrophic lakes and ponds in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	This SAC has a very large number of lakes and ponds (more than 1,100 from 1:5,000 OSi data). Most are surrounded by peatland and are likely to contain lake habitats 3110 and/or 3160. The selection of the SAC for habitat 3160 was based on its widespread distribution in areas of low-lying blanket bog; dystrophic ponds being found wherever the peat is deep and the water table high. The habitat is considered to be of high conservation value in the SAC. Two measures of extent should be used: 1. the area of the lake itself and; 2. the extent of the vegetation communities/zones that typify the habitat. For further information on the distribution, vegetation and morphology of the habitat in the site, see Douglas and Grogan (1987) and Douglas et al. (1989). Further information relating to all attributes is provided in the lake habitats supporting document for the purposes of site-specific conservation objectives and Article 17 reporting (O Connor, 2015)
Habitat distribution	Occurrence	No decline, subject to natural processes	As noted above, it is likely that the habitat is widespread and of high conservation value in the site (see map 6)
Typical species	Occurrence	Typical species present, in good condition, and demonstrating typical abundances and distribution	For lists of typical plant and invertebrate species, see Article 17 habitat assessment for 3160 (NPWS, 2013) and the lake habitats supporting document for the purposes of site-specific conservation objectives and Article 17 reporting (O Connor, 2015)
Vegetation composition: characteristic zonation	Occurrence	All characteristic zones should be present, correctly distributed and in good condition	The characteristic zonation of lake habitat 3140 has been described (Roden and Murphy, 2013; in prep.), however significant further work is necessary to describe the characteristic zonation and other spatial patterns in the other Annex I lake habitats. Spatial patterns are likely to be relatively simple in 3160 lakes and ponds, with limited zonation
Vegetation distribution: maximum depth	Metres	Maintain maximum depth of vegetation, subject to natural processes	The maximum depth of vegetation is likely to be specific to the lake shoreline in question. An indicative target of >6m has been developed for hard water lakes (3140) (see Roden and Murphy, 2013; in prep.). Indicative targets will be developed for the other lake habitats with time. Lakes in the SAC typically have very clear water and, therefore, maximum depth is expected to be large
Hydrological regime: water level fluctuations	Metres	Maintain appropriate natural hydrological regime necessary to support the habitat	Fluctuations in lake water level are typical in Ireland, but can be amplified by activities such as abstraction and drainage. Increased water level fluctuations can increase wave action, up-root vegetation, increase turbidity, alter the substratum and lead to release of nutrients from the sediment. The hydrological regime of the lakes must be maintained so that the area, distribution and depth of the lake habitat and its constituent/characteristic vegetation zones and communities are not reduced. Owing to their size and the sensitivity of peatland, 3160 lakes and ponds can easily be damaged or destroyed by drainage
Lake substratum quality	Various	Maintain appropriate substratum type, extent and chemistry to support the vegetation	Research is required to further characterise the substratum types (particle size and origin) and substratum quality (notably pH, calcium, iron and nutrient concentrations) favoured by each of the five Annex I lake habitats in Ireland. It is likely that habitat 3160 is associated with nutrient-poor peat and silt substrates
28	3 Oct 2015	Version 1	Page 19 of 42

Water quality: transparency	Metres	Maintain appropriate Secchi transparency. There should be no decline in Secchi depth/transparency	Transparency relates to light penetration and, hence, to the depth of colonisation of vegetation. It can be affected by phytoplankton blooms, water colour and turbidity. A target has been set for hard water lakes (3140), however specific targets have yet to be established for the remaining lake habitats. Habitat 3160 is associated with very clear water. The OECD fixed boundary system set transparency targets for ultra-oligotrophic lakes of ≥12m annual mean Secchi disk depth, and ≥6m annual minimum Secchi disk depth
Water quality: nutrients	μg/l P or mg/l N	Maintain the concentration of nutrients in the water column to sufficiently low levels to support the habitat and its typical species	As a nutrient poor habitat, oligotrophic and Water Framework Directive 'high' status targets apply. Where a lake has nutrient concentrations that are lower than these targets, there should be no decline within class, i.e. no upward trend in nutrient concentrations. For 3160 lakes and ponds, annual average TP concentration should be $\leq 5\mu g/I$ TP, average annual total ammonia concentration should be $\leq 0.040mg/I$ N and annual 95th percentile for total ammonia should be $\leq 0.090mg/I$ N. See also The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water quality: phytoplankton biomass	µg/l Chlorophyll <i>a</i>	Maintain appropriate water quality to support the habitat, including high chlorophyll <i>a</i> status	Oligotrophic and Water Framework Directive 'high' status targets apply to habitat 3160. The average growing season (March-October) chlorophyll <i>a</i> concentration must be $<5.8\mu$ g/l (The European Communities Environmental Objectives (Surface Waters) Regulations 2009). Where a lake has a chlorophyll <i>a</i> concentration that is lower than this target, there should be no decline within class, i.e. no upward trend in phytoplankton biomass. The OECD targets may be more appropriate for habitat 3160: annual average chlorophyll <i>a</i> concentration $<1\mu$ g/l and annual peak chlorophyll <i>a</i> concentration $\le2.5\mu$ g/l. See also The European Communities Environmental Objectives (Surface Waters) Regulations 2009
Water quality: phytoplankton composition	EPA phytoplankton composition metric	Maintain appropriate water quality to support the habitat, including high phytoplankton composition status	The EPA has developed a phytoplankton composition metric for nutrient enrichment of Irish lakes. As for other water quality indicators, habitat 3160 requires WFD high status
Water quality: attached algal biomass	Algal cover and EPA phytobenthos metric	Maintain trace/ absent attached algal biomass (<5% cover) and high phytobenthos status	Nutrient enrichment can favour epiphytic and epipelic algae that can out-compete the submerged vegetation. The cover abundance of attached algae in 3160 lakes and ponds should, therefore, be trace/ absent (<5% cover). EPA phytobenthos can be used as an indicator of changes in attached algal biomass. As for other water quality indicators, habitat 3160 requires high phytobenthos status
Water quality: macrophyte status	EPA macrophyte metric (The Free Index)	Maintain high macrophyte status	Nutrient enrichment can favour more competitive submerged macrophyte species that out-compete the typical and characteristic species for the lake habitat. The EPA monitors macrophyte status for Water Framework Directive purposes using the 'Free Index'. The target for 3160 lakes and ponds is high status or an Ecological Quality Ratio (EQR) for lake macrophytes of ≥ 0.90 , as defined in Schedule Five of the European Communities Environmental Objectives (Surface Waters) Regulations 2009

Acidification status	pH units; mg/l	Maintain appropriate water and sediment pH, alkalinity and cation concentrations to support the habitat, subject to natural processes	Acidification can impact on species abundance and composition in soft water lake habitats. Although EC (2013) describes habitat 3160 as having pH 3-6, Drinan (2012) found mean pHs of 5.16 and 5.62 in upland and lowland 3160 lakes, respectively. The target for habitat 3160 is pH >4.5 and <9.0, in line with the surface water standards for soft waters (where water hardness is ≤ 100 mg/l CaCO3). See Schedule Five of the European Communities Environmental Objectives (Surface Waters) Regulations 2009. The specific requirements of lake habitat 3160, in terms of water and sediment pH, alkalinity and cation concentration, have not been determined
Water colour	mg/l PtCo	Maintain appropriate water colour to support the habitat	Increased water colour and turbidity decrease light penetration and can reduce the area of available habitat for lake macrophytes, particularly at the lower euphotic depths. The primary source of increased water colour in Ireland is disturbance to peatland. No habitat-specific or national standards for water colour currently exist. Studies have shown median colour concentrations in Irish lakes of 38mg/l PtCo (Free, et al., 2000) and 33mgl PtCo (Free et al., 2006). It is likely that the water colour in all Irish lake habitats would naturally be <50mg/l PtCo. Water colour can be very low (<20mg/l PtCo or even <10mg/l PtCo) in 3160 lakes and ponds, where the peatland in the lake's catchment is intact
Dissolved organic carbon (DOC)	mg/l	Maintain appropriate organic carbon levels to support the habitat	Dissolved (and particulate) organic carbon (OC) in the water column is linked to water colour and acidification (organic acids). Increasing DOC in water has been documented across the Northern Hemisphere, including afforested peatland catchments in Ireland. Damage and degradation of peatland, leading to decomposition of peat is likely to be the predominant source of OC in Ireland. OC in water promotes decomposition by fungi and bacteria that, in turn, releases dissolved nutrients. The increased biomass of decomposers can also impact directly on the characteristic lake communities through shading, competition, etc.
Turbidity	Nephelometric turbidity units/ mg/l SS/ other appropriate units	Maintain appropriate turbidity to support the habitat	Turbidity can significantly affect the quantity and quality of light reaching rooted and attached vegetation and can, therefore, impact on lake habitats. The settlement of higher loads of inorganic or organic material on lake vegetation communities may also have impacts on sensitive, delicate species. Turbidity can increase as a result of re-suspension of material within the lake, higher loads entering the lake, or eutrophication. Turbidity measurement and interpretation is challenging. As a result, it is likely to be difficult to set habitat-specific targets for turbidity in lakes
Fringing habitat	Area	Maintain the area and condition of fringing habitats necessary to support the natural structure and functioning of habitat 3160	Most 3160 lake and pond shorelines intergrade with blanket bog, flush, poor fen or heath habitats and these support the structure and functions of the lake habitat. Equally, fringing habitats are dependent on the lake, particularly its water levels, and can support wetland communities and species of conservation concern

Page 21 of 42

3260 Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation

To maintain the favourable conservation condition of Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Kilometres	Area stable or increasing, subject to natural processes	Selection of this SAC for 3260 used a broad interpretation and little is known of the distribution of high conservation value sub-types. Rivers and streams are widespread and abundant in the SAC (see map 7). Note: rooted macrophytes should be absent or trace (<5% cover) in freshwater pearl mussel (<i>Margaritifera margaritifera</i>) habitat. The SAC overlaps with three <i>Margaritifera</i> sensitive areas: Owenriff (priority SAC catchment), Knock and Ballynahinch/Recess (see map 7). Mussels occur within the SAC in the Derrygauna River (tributary of the Owenriff), and the Owentooey and Recess Rivers. Within the Owenriff catchment, the freshwater pearl mussel (1029) conservation objective for Lough Corrib SAC (000297) takes precedence, because the mussel requires environmental conditions close to natural background levels
Habitat distribution	Occurrence	No decline, subject to natural processes	The description of 3260 is broad, from upland bryophyte/macroalgal dominated river stretches, to lowland depositing rivers with pondweeds and starworts (EC, 2013), and further study is needed of Irish sub-types and their conservation value. As noted above, little is known about the distribution of the habitat and its sub-types in the site. Heuff (1987) surveyed the Vougheen Stream, the outflow from Lough Cam (both in Roundstone Blanket Bog) and the Owenboliska. Rivers in the SAC are, naturally, very nutrient-poor, with five High Status sites on four rivers noted by Ni Chathain et al. (2013). Rivers and streams can be peaty and slow- flowing in flat blanket bog, and spatey, often with cascades, in more sloping areas. They are frequently base-poor, but <i>Margaritifera</i> rivers tend to have base-rich influences. See Williams (2009) and DEHLG (2010) for information on macrophytes in the Owenriff catchment
Hydrological regime: river flow	Metres per second	Maintain appropriate hydrological regimes	Any high conservation value sub-types in the site will be associated with natural hydrology. A natural flow regime is required for both plant communities and channel geomorphology to be in favourable condition, exhibiting typical dynamics for the river type (Hatton-Ellis and Grieve, 2003). For many of the sub-types of this habitat, high flows are required to maintain the substratum necessary for the characteristic species. Flow variation can be particularly important, with high and flood flows being critical to the hydromorphology. Peatlands can also have slow-flowing or ponded streams and rivers, with biotic communities likely to resemble those in associated lakes
Hydrological regime: groundwater discharge	Metres per second	Maintain appropriate hydrological regimes	The groundwater contribution to rivers in the SAC is likely to be small, owing to the geology and dominance of blanket peat soils. Even small groundwater contributions, however, can significantly alter the hydrochemistry, particularly where there is basic bedrock (e.g. lake marbles or the Metagabbro Suite) and/or subsoils

Substratum composition: particle size range	Millimetres	Maintain appropriate substratum particle size range, quantity and quality, subject to natural processes	Although many of the high conservation value sub- types are dominated by coarse substrata, for certain sub-types, notably tidal forms, fine substrata are required. Peat is a common substratum in gently sloping rivers within the site. The size and distribution of particles is largely determined by the river flow. The chemical composition (particularly minerals and nutrients) of the substratum is also important. The quality of finer sediment particles is a notable driver for rooted plant communities
Water quality	Various	Maintain appropriate water quality to support the natural structure and functioning of the habitat	The specific targets may vary among sub-types. The rivers within the SAC are considered to be naturally very nutrient poor and, therefore, to typically require Water Framework Directive high status, in terms of nutrient and oxygenation standards, and EQRs (Ecological Quality Ratios) for macroinvertebrates and phytobenthos
Vegetation composition: typical species	Occurrence	Typical species of the relevant habitat sub-type should be present and in good condition	The sub-types of this habitat are poorly understood and their typical species have not yet been fully defined. The typical species may include higher plants, bryophytes, macroalgae and microalgae, and invertebrates. The only known Irish sites for <i>Luronium natans</i> are in the SAC, and although generally considered to be a lake species, it has been found in two streams (Rich et al., 1995; Curtis et al., 2012). The status of <i>Luronium natans</i> in Ireland is currently uncertain, as it is unclear whether it is native to these sites, or was introduced (Preston and Croft, 2001). The uncommon pondweed hybrid, <i>Potamogeton</i> x <i>sparganiifolius</i> is known from the Owenmore (Ballynahinch) River (Preston et al., 1991)
Floodplain connectivity: area	Hectares	Area of active floodplain at, and upstream of the habitat, necessary to support all sub-types of the habitat, should be maintained	River connectivity with the floodplain is important for the functioning of this habitat. Channels with a naturally functioning floodplain are better able to maintain habitat and water quality (Hatton-Ellis and Grieve, 2003). Floodplain connectivity is particularly important in terms of sediment sorting and nutrient deposition. High conservation value rivers are intimately connected to floodplain habitats and function as important wildlife corridors, connecting otherwise isolated or fragmented habitats in the wider countryside (Hatton-Ellis and Grieve, 2003)
Riparian habitat: area	Hectares	Maintain the area and condition of fringing habitats necessary to support the habitat and its sub-types	Riparian habitats, including those along lake fringes, even where they do not form part of a natural floodplain, are an integral part of the structure and functioning of river systems. Fringing habitats can contribute to the aquatic food web (e.g. allochthonous matter such as leaf fall), provide habitat (refuge and resources) for certain life-stages of fish, birds and aquatic invertebrates, assist in the settlement of fine suspended material, protect banks from erosion and contribute to nutrient cycling. Shade may also be important in suppressing algal growth in enriched rivers and moderating temperatures. Equally, fringing habitats are dependent on rivers/lakes, particularly their water levels, and support wetland communities and species of conservation concern

4010 Northern Atlantic wet heaths with Erica tetralix

To restore the favourable conservation condition of Northern Atlantic wet heaths with *Erica tetralix* in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Stable or increasing, subject to natural processes	Northern Atlantic wet heaths with <i>Erica tetralix</i> has not been mapped in detail for this SAC and thus total area of the qualifying habitat is unknown. It occurs in mosaic/in association with with other habitats, including other heath habitats (4030), blanket bogs (7130), lakes (3110, 3160), rocky outcrops and grasslands. Further information can be found in Douglas and Grogan (1987); Douglas et al. (1989); NPWS internal files; commonage framework plans for part or all of the following agricultural units: GA2, GA4, GA5, GA6, GA7, GA8, GA9, GA11, GA15, GA16, GA18, GA21
Habitat distribution	Occurrence	No decline, subject to natural processes	See note on area above
Ecosystem function: soil nutrients	Soil pH and appropriate nutrient levels at a representative number of monitoring stops	Maintain soil nutrient status within natural range	Relevant nutrients and their natural ranges are yet to be defined. However, nitrogen deposition is noted as being relevant to this habitat in NPWS (2013)
Community diversity	Abundance of variety of vegetation communities	Maintain variety of vegetation communities, subject to natural processes	Further information on vegetation communities associated with this habitat is presented in Perrin et al. (2014)
Vegetation composition: cross-leaved heath	Occurrence within 20m of a representative number of 2m x 2m monitoring stops	Presence of cross-leaved heath (<i>Erica tetralix</i>) near each monitoring stop	Attribute and target based on Perrin et al. (2014)
Vegetation composition: positive indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of positive indicator species at least 50%	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: lichens and bryophytes	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of <i>Cladonia</i> and <i>Sphagnum</i> species, <i>Racomitrium lanuginosum</i> and pleurocarpous mosses at least 10%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: ericoid species and crowberry	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of ericoid species and crowberry (<i>Empetrum</i> <i>nigrum</i>) at least 15%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: dwarf shrub species	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of dwarf shrubs less than 75%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: negative indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of negative indicator species less than 1%	Attribute and target based on Perrin et al. (2014) where the list of negative indicator species is also given
Vegetation composition: non- native species	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of non-native species less than 1%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: native trees and shrubs	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of scattered native trees and shrubs less than 20%	Attribute and target based on Perrin et al. (2014)

Page 24 of 42

Vegetation composition: bracken	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of bracken (<i>Pteridium aquilinum</i>) less than 10%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: soft rush	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of soft rush (<i>Juncus effusus</i>) less than 10%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: <i>Sphagnum</i> condition	Condition at a representative number of 2m x 2m monitoring stops	Less than 10% of the <i>Sphagnum</i> cover is crushed, broken and/or pulled up	Attribute and target based on Perrin et al. (2014)
Vegetation structure: signs of browsing	Percentage of shoots browsed at a representative number of 2m x 2m monitoring stops	Less than 33% collectively of the last complete growing season's shoots of ericoids, crowberry (<i>Empetrum nigrum</i>) and bog-myrtle (<i>Myrica gale</i>) showing signs of browsing	Attribute and target based on Perrin et al. (2014)
Vegetation structure: burning	Occurrence in local vicinity of a representative number of 2m x 2m monitoring stops	No signs of burning in sensitive areas, into the moss, liverwort or lichen layer or exposure of peat surface due to burning	Attribute and target based on Perrin et al. (2014) where the list of sensitive areas is also presented
Physical structure: disturbed bare ground	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of disturbed bare ground less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: drainage	Percentage cover in local vicinity of a representative number of monitoring stops	Area showing signs of drainage from heavy trampling, tracking or ditches less than 10%	Attribute and target based on Perrin et al. (2014)
Indicators of local distinctiveness	Occurrence and population size	No decline in distribution or population sizes of rare, threatened or scarce species associated with the habitat	This includes species listed in the Flora (Protection) Order 2015 and/or the red data book (Curtis and McGough, 1988)

Page 25 of 42

4030 European dry heaths

To restore the favourable conservation condition of European dry heaths in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	European dry heaths has not been mapped in detai for this SAC and thus total area of the qualifying habitat is unknown. It occurs in mosaic/in association with other habitats, including other heath habitats (4010, 4060), rocky outcrops and grasslands. Further information can be found in Douglas and Grogan (1987); Douglas et al. (1989); NPWS internal files; commonage framework plans for part or all of the following agricultural units: GA2, GA4, GA5, GA6, GA7, GA8, GA9, GA11, GA15, GA16, GA18, GA21
Habitat distribution	Occurrence	No decline, subject to natural processes	See note on area above
Ecosystem function: soil nutrients	Soil pH and appropriate nutrient levels at a representative number of monitoring stops	Maintain soil nutrient status within natural range	Relevant nutrients and their natural ranges are yet to be defined. However, nitrogen deposition is note as being relevant to this habitat in NPWS (2013)
Community diversity	Abundance of variety of vegetation communities	Maintain variety of vegetation communities, subject to natural processes	Further information on these communities is presented in Perrin et al. (2014)
Vegetation composition: lichens and bryophytes	Number of species at a representative number of 2m x 2m monitoring stops	Number of bryophyte or non-crustose lichen species present at each monitoring stop is least three, excluding <i>Campylopus</i> and <i>Polytrichum</i> mosses	Attribute and target based on Perrin et al. (2014)
Vegetation composition: number of positive indicator species	Number at a representative number of 2m x 2m monitoring stops	Number of positive indicator species present at each monitoring stop is at least two	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat, which is composed of dwarf shrubs, is also presented
Vegetation composition: cover of positive indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of positive indicator species at least 50% for siliceous dry heath and 50- 75% for calcareous dry heath	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat, which is composed of dwarf shrubs, is also given
Vegetation structure: dwarf shrub composition	Percentage cover at a representative number of 2m x 2m monitoring stops	Proportion of dwarf shrub cover composed collectively of bog-myrtle (<i>Myrica gale</i>), creeping willow (<i>Salix repens</i>) and western gorse (<i>Ulex gallii</i>) is less than 50%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: negative indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of negative indicator species less than 1%	Attribute and target based on Perrin et al. (2014) where the list of negative indicator species is also given
Vegetation composition: non- native species	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of non-native species less than 1%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: native trees and shrubs	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of scattered native trees and shrubs less than 20%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: bracken	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of bracken (<i>Pteridium aquilinum</i>) less than 10%	Attribute and target based on Perrin et al. (2014)
28	Oct 2015	Version 1	Page 26 of 42

Vegetation composition: soft rush	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of soft rush (<i>Juncus effusus</i>) less than 10%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: senescent ling	Percentage cover at a representative number of 2m x 2m monitoring stops	Senescent proportion of ling (<i>Calluna vulgaris</i>) cover less than 50%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: signs of browsing	Percentage of shoots browsed at a representative number of 2m x 2m monitoring stops	Less than 33% collectively of the last complete growing season's shoots of ericoids showing signs of browsing	Attribute and target based on Perrin et al. (2014)
Vegetation structure: burning	Occurrence in local vicinity of a representative number of monitoring stops	No signs of burning in sensitive areas	Attribute and target based on Perrin et al. (2014) where the list of sensitive areas is also presented
Vegetation structure: growth phases of ling	Percentage cover in local vicinity of a representative number of monitoring stops	Outside sensitive areas, all growth phases of ling should occur throughout, with at least 10% of cover in the mature phase	Attribute and target based on Perrin et al. (2014)
Vegetation structure: disturbed bare ground	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of disturbed bare ground less than 10%	Attribute and target based on Perrin et al. (2014)
Indicators of local distinctiveness	Occurrence and population size	No decline in distribution or population sizes of rare, threatened or scarce species associated with the habitat and no decline in status of hepatic mats associated with this habitat	This includes species listed in the Flora (Protection) Order 2015 and/or the red data book (Curtis and McGough, 1988)

6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae)

To maintain the favourable conservation condition of *Molinia* meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	This Annex I grassland habitat has not been mapped for this SAC and thus the total area of the qualifying habitat is unknown. It is likely to occur as rather small fragmented areas on wet acid soils (NPWS internal files)
Habitat distribution	Occurrence	No decline, subject to natural processes	See note for area above
Vegetation composition: typical species	Number at a representative number of monitoring stops	At least seven positive indicator species present, including one "high quality" species as listed in O'Neill et al. (2013)	List of positive indicator species, including high quality species, identified by O'Neill et al. (2013). Note that purple moor-grass (<i>Molinia caerulea</i>) is a positive indicator species, but not necessarily an essential component of the habitat
Vegetation composition: negative indicator species	Percentage at a representative number of monitoring stops	Negative indicator species collectively not more than 20% cover, with cover by an individual species not more than 10%	Attribute and target based on O'Neill et al. (2013)
Vegetation composition: non- native species	Percentage at a representative number of monitoring stops	Cover of non-native species not more than 1%	List of negative indicator species identified by O'Neill et al. (2013)
Vegetation composition: moss species	Percentage at a representative number of monitoring stops	Hair mosses (<i>Polytrichum</i> spp.) not more than 25% cover	Attribute and target based on O'Neill et al. (2013)
Vegetation structure: woody species and bracken	Percentage at a representative number of monitoring stops	Cover of woody species and bracken (<i>Pteridium</i> <i>aquilinum</i>) not more than 5% cover	Attribute and target based on O'Neill et al. (2013)
Vegetation structure: broadleaf herb: grass ratio	Percentage at a representative number of monitoring stops	Broadleaf herb component of vegetation between 40 and 90%	Attribute and target based on O'Neill et al. (2013)
Vegetation structure: sward height	Percentage at a representative number of monitoring stops	At least 30% of sward between 10 and 80cm tall	Attribute and target based on O'Neill et al. (2013)
Vegetation structure: litter	Percentage at a representative number of monitoring stops	Litter cover not more than 25%	Attribute and target based on O'Neill et al. (2013)
Physical structure: bare ground	Percentage	Not more than 10% bare ground	Attribute and target based on O'Neill et al. (2010)
Physical structure: bare soil	Percentage at a representative number of monitoring stops	Not more than 10% bare soil	Attribute and target based on O'Neill et al. (2013)
Physical structure: disturbance	Square metres	Area showing signs of serious grazing or other disturbance less than 20m ²	Attribute and target based on O'Neill et al. (2013)

7130 Blanket bogs (* if active bog)

To restore the favourable conservation condition of Blanket bogs in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Stable or increasing, subject to natural processes	Blanket bogs has not been mapped in detail for this SAC and thus total area of the qualifying habitat is unknown. It occurs in mosaic/in association with other habitats, including lakes (3110, 3160), heath habitats (4010, 4030), transition mires (7150) and rocky outcrops. Further information can be found in Douglas and Grogan (1987); Douglas et al. (1989); NPWS internal files; commonage framework plans for part or all of the following agricultural units: GA2, GA4, GA5, GA6, GA7, GA8, GA9, GA11, GA15, GA16, GA18, GA21
Habitat distribution	Occurrence	No decline, subject to natural processes	See note on area above
Ecosystem function: soil nutrients	Soil pH and appropriate nutrient levels at a representative number of monitoring stops	Maintain soil nutrient status within natural range	Relevant nutrients and their natural ranges are yet to be defined. However, nitrogen deposition is noted as being relevant to this habitat in NPWS (2013)
Ecosystem function: peat formation	Active blanket bog as a proportion of the total area of Annex I blanket bog habitat	Active bog at least 99% of the total Annex I blanket bog area	Blanket bogs are considered active when "still supporting a significant area of vegetation that is normally peat forming" (EC, 2013)
Ecosystem function: hydrology	Flow direction, water levels, occurrence of drains and erosion gullies	Natural hydrology unaffected by drains and erosion	Drains and erosion gullies can affect the natural hydrologial processes of blanket bog
Community diversity	Abundance of variety of vegetation communities	Maintain variety of vegetation communities, subject to natural processes	Further information on vegetation communities associated with this habitat is presented in Perrin et al. (2014)
Vegetation composition: positive indicator species	Number of species at a representative number of 2m x 2m monitoring stops	Number of positive indicator species at each monitoring stop is at least seven	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: lichens and bryophytes	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of bryophytes or lichens, excluding <i>Sphagnum fallax</i> , at least 10%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: potential dominant species	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of each of the potential dominant species less than 75%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: negative indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of negative indicator species less than 1%	Attribute and target based on Perrin et al. (2014) where the list of negative indicator species for this habitat is also given
Vegetation composition: non- native species	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of non-native species less than 1%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: native trees and scrub	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of scattered native trees and shrubs less than 10%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: <i>Sphagnum</i> condition	Condition of <i>Sphagnum</i> at a representative number of 2m x 2m monitoring stops	Less than 10% of the <i>Sphagnum</i> cover is crushed, broken and/or pulled up	Attribute and target based on Perrin et al. (2014)

Vegetation structure: signs of browsing	Percentage of shoots browsed at a representative number of 2m x 2m monitoring stops	Last complete growing season's shoots of ericoids, crowberry (<i>Empetrum</i> <i>nigrum</i>) and bog-myrtle (<i>Myrica gale</i>) showing signs of browsing collectively less than 33%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: burning	Occurrence in local vicinity of a representative number of monitoring stops	No signs of burning in sensitive areas, into the moss, liverwort or lichen layer or exposure of peat surface due to burning	Attribute and target based on Perrin et al. (2014) where the list of sensitive areas is also presented
Physical structure: disturbed bare ground	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of disturbed bare ground less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: drainage	Percentage area in local vicinity of a representative number of monitoring stops	Area showing signs of drainage from heavy trampling, tracking or ditches less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: erosion	Occurrence in local vicinity of a representative number of monitoring stops	Less than 5% of the greater bog mosaic comprises erosion gullies and eroded areas	Attribute and target based on Perrin et al. (2014). The greater bog mosaic incorporates the blanket bog itself and associated vegetation types as well as non-vegetation cover types that appear to have been derived from former blanket bog including gravel, rock and running water
Indicators of local distinctiveness	Occurrence and population size	No decline in distribution or population sizes of rare, threatened or scarce species associated with the habitat	This includes species listed in the Flora (Protection) Order 2015 and/or the red data book (Curtis and McGough, 1988)

7140 Transition mires and quaking bogs

To restore the favourable conservation condition of Transition mires and quaking bogs in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	Transition mires and quaking bogs has not been mapped in detail for this SAC and thus total area of the qualifying habitat is unknown. It occurs in mosaic/in association with other habitats including blanket bogs (7130) and heath habitats (4010) and fen (7230). Further information can be found in Douglas and Grogan (1987); Douglas et al. (1989); NPWS internal files; commonage framework plans for part or all of the following agricultural units: GA2, GA4, GA5, GA6, GA7, GA8, GA9, GA11, GA15, GA16, GA18, GA21
Habitat distribution	Occurrence	No decline from current distribution, subject to natural processes	See note on area above
Ecosystem function: soil nutrients	Soil pH and appropriate nutrient levels at a representative number of monitoring stops	Maintain soil nutrient status within natural range	Relevant nutrients and their natural ranges are yet to be defined. However, nitrogen deposition is noted as being relevant to this habitat in NPWS (2013)
Community diversity	Abundance of variety of vegetation communities	Maintain variety of vegetation communities, subject to natural processes	Further information on vegetation communities associated with this habitat is presented in Perrin et al. (2014)
Vegetation composition: number of positive indicator species	Number at a representative number of 2m x 2m monitoring stops	Number of positive indicator species at least three for in-filling pools and flushes and at least six for fens	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: number of core positive indicator species	Number of species at a representative number of 2m x 2m monitoring stops	At least one core positive indicator species present	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: cover of positive indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of positive indicator species is at least 25%	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: negative indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of negative indicator species less than 1%	Attribute and target based on Perrin et al. (2014) where the list of negative indicator species for this habitat is also given
Vegetation composition: non- native species	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of non-native species less than 1%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: height	Percentage at a representative number of 2m x 2m monitoring stops	Proportion of live leaves and/or flowering shoots of vascular plants that are more than 15cm above the ground surface should be at least 50%	Attribute and target based on Perrin et al. (2014). This attribute is only applicable to fen and flush examples of the habitat, not to infilling pool examples
Physical structure: disturbed bare ground	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of disturbed bare ground less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: drainage	Percentage area in local vicinity of a representative number of monitoring stops	Area showing signs of drainage from heavy trampling, tracking or ditches less than 10%	Attribute and target based on Perrin et al. (2014)

28 Oct 2015

Page 31 of 42

Version 1

Indicators of local distinctiveness	Occurrence and population size	No decline in distribution or population sizes of rare, threatened or scarce species associated with the habitat	This includes species listed in the Flora (Protection) Order 2015 and/or the red data book (Curtis and McGough, 1988)
--	--------------------------------	--	---

7150

Depressions on peat substrates of the Rhynchosporion

To restore the favourable conservation condition of Depressions on peat substrates of the Rhynchosporion in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	Depressions on peat substrates of the Rhynchosporion has not been mapped in detail for this SAC and thus total area of the qualifying habitat is unknown. It overlaps with blanket bogs (7130). Further information can be found in Douglas and Grogan (1987); Douglas et al. (1989); NPWS internal files
Habitat distribution	Occurrence	No decline, subject to natural processes	See note on area above
Ecosystem function: soil nutrients	Soil pH and appropriate nutrient levels at a representative number of monitoring stops	Maintain soil nutrient status within natural range	Relevant nutrients and their natural ranges are yet to be defined. However, nitrogen deposition is noted as being relevant to this habitat in NPWS (2013)
Vegetation composition: positive indicator species	Number of species at a representative number of 2m x 2m monitoring stops	Number of positive indicator species at each monitoring stop is at least five	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: <i>Rhynchospora</i> spp.	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of white beaked sedge (<i>Rhynchospora alba</i>) and brown beaked sedge (<i>R.</i> <i>fusca</i>) at least 10%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: potential dominant species	Percentage cover at a representative number of 2m x 2m monitoring stops	Cover of each of the potential dominant species less than 35%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: negative indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of negative indicator species less than 1%	Attribute and target based on Perrin et al. (2014) where the list of negative indicator species for this habitat is also given
Vegetation composition: non- native species	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of non-native species less than 1%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: native trees and scrub	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of scattered native trees and shrubs less than 10%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: <i>Sphagnum</i> condition	Condition of <i>Sphagnum</i> at a representative number of 2m x 2m monitoring stops	Less than 10% of the <i>Sphagnum</i> cover is crushed, broken and/or pulled up	Attribute and target based on Perrin et al. (2014)
Vegetation structure: signs of browsing	Percentage of shoots browsed at a representative number of 2m x 2m monitoring stops	Last complete growing season's shoots of ericoids, crowberry (<i>Empetrum</i> <i>nigrum</i>) and bog-myrtle (<i>Myrica gale</i>) showing signs of browsing collectively less than 33%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: burning	Occurrence in local vicinity of a representative number of monitoring stops	No signs of burning in sensitive areas, into the moss, liverwort or lichen layer or exposure of peat surface due to burning	Attribute and target based on Perrin et al. (2014) where the list of sensitive areas is also presented

Physical structure: disturbed bare ground	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of disturbed bare ground less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: drainage	Percentage area in local vicinity of a representative number of monitoring stops	Area showing signs of drainage from heavy trampling, tracking or ditches less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: erosion	Occurrence in local vicinity of a representative number of monitoring stops	Less than 5% of the greater bog mosaic comprises erosion gullies and eroded areas	Attribute and target based on Perrin et al. (2014). The greater bog mosaic incorporates the blanket bog itself, associated vegetation types as well as non-vegetation cover types that appear to have been derived from former blanket bog including gravel, rock and running water
Indicators of local distinctiveness	Occurrence and population size	No decline in distribution or population sizes of rare, threatened or scarce species associated with the habitat	This includes species listed in the Flora (Protection) Order 2015 and/or the red data book (Curtis and McGough, 1988)

7230 Alkaline fens

To restore the favourable conservation condition of Alkaline fens in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes	Alkaline fens has not been mapped in detail for this SAC and thus total area of the qualifying habitat is unknown. It occurs in mosaic/in association with other habitats including blanket bogs (7130), transition mires (7140) and heath habitats (4010). Further information can be found in Douglas and Grogan (1987); Douglas et al. (1989); NPWS internal files; commonage framework plans for part or all of the following agricultural units: GA2, GA4, GA5, GA6, GA7, GA8, GA9, GA11, GA15, GA16, GA18, GA21
Habitat distribution	Occurrence	No decline from current distribution, subject to natural processes	See note on area above
Ecosystem function: soil nutrients	Soil pH and appropriate nutrient levels at a representative number of monitoring stops	Maintain soil nutrient status within natural range	Relevant nutrients and their natural ranges are yet to be defined. However, nitrogen deposition is noted as being relevant to this habitat in NPWS (2013)
Community diversity	Abundance of variety of vegetation communities	Maintain variety of vegetation communities, subject to natural processes	Further information on the communities associated with this habitat is presented in Perrin et al. (2014)
Vegetation composition: number of positive indicator species (brown mosses)	Number at a representative number of 2m x 2m monitoring stops	Number of brown moss species present at each monitoring stop is at least one	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: number of positive indicator species (vascular plants)	Number at a representative number of 2m x 2m monitoring stops	Number of positive vascular plant indicator species at least two for small-sedge flushes and at least three for black bog- rush (<i>Schoenus nigricans</i>) flush and bottle sedge (<i>Carex rostrata</i>) fen	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: cover of positive indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of brown moss species and positive vascular plant indicator species at least 20% for small-sedge flushes and at least 75% cover for black bog-rush (<i>Schoenus</i> <i>nigricans</i>) flush and bottle sedge (<i>Carex rostrata</i>) fen	Attribute and target based on Perrin et al. (2014) where the list of positive indicator species for this habitat is also given
Vegetation composition: negative indicator species	Percentage cover at a representative number of 2m x 2m monitoring stops	Total cover of negative indicator species less than 1%	Attribute and target based on Perrin et al. (2014) where the list of negative indicator species for this habitat is also given
Vegetation composition: non- native species	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of non-native species less than 1%	Attribute and target based on Perrin et al. (2014)
Vegetation composition: native trees and scrub	Percentage cover in local vicinity of a representative number of monitoring stops	Cover of scattered native trees and shrubs less than 10%	Attribute and target based on Perrin et al. (2014)

Vegetation composition: soft rush and common reed	Percentage cover in local vicinity of a representative number of monitoring stops	Total cover of soft rush (<i>Juncus effusus</i>) and common reed (<i>Phragmites</i> <i>australis</i>) less than 10%	Attribute and target based on Perrin et al. (2014)
Vegetation structure: height	Percebntage at a representative number of 2m x 2m monitoring stops	Proportion of live leaves and/or flowering shoots of vascular plants that are more than 5cm above the ground surface should be at least 50%	Attribute and target based on Perrin et al. (2014)
Physical structure: disturbed bare ground	Percentage cover at, and in local vicinity of, a representative number of 2m x 2m monitoring stops	Cover of disturbed bare ground less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: drainage	Percentage area in local vicinity of a representative number of monitoring stops	Area showing signs of drainage from heavy trampling, tracking or ditches less than 10%	Attribute and target based on Perrin et al. (2014)
Physical structure: tufa formations	Occurrence in local vicinity of a representative number of monitoring stops	Disturbed proportion of vegetation cover is less than 1%	Attribute and target based on Perrin et al. (2014)
Indicators of local distinctiveness	Occurrence and population size	No decline in distribution or population sizes of rare, threatened or scarce species associated with the habitat	This includes species listed in the Flora (Protection) Order 2015 and/or the red data book (Curtis and McGough, 1988

91A0

Old sessile oak woods with Ilex and Blechnum in the British Isles

To maintain the favourable conservation condition of Old sessile oak woods with *Ilex* and *Blechnum* in the British Isles in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Habitat area	Hectares	Area stable or increasing, subject to natural processes. See map 8 for surveyed areas	This SAC includes a number of areas of this Annex I woodland type, some of which have been recently surveyed and mapped by the National Survey of Native Woodlands (NSNW) (Perrin et al., 2008): sites no. 1600, 1602, 1930. NB there are other areas of this habitat within the SAC, such as on lake islands (NPWS internal files)
Habitat distribution	Occurrence	No decline, subject to natural processes. Surveyed locations are shown on map 8	See note on area above
Woodland size	Hectares	Area stable or increasing. Where topographically possible, "large" woods at least 25ha in size and "small" woods at least 3ha in size	The target areas for individual woodlands aim to reduce habitat fragmentation and benefit those species requiring 'deep' woodland conditions (Peterken, 2002). In some cases, topographical constraints may restrict expansion
Woodland structure: cover and height	Percentage and metres	Diverse structure with a relatively closed canopy containing mature trees; subcanopy layer with semi- mature trees and shrubs; and well-developed herb layer	Described in Perrin et al (2008)
Woodland structure: community diversity and extent	Hectares	Maintain diversity and extent of community types	Based on data from Perrin et al. (2008)
Woodland structure: natural regeneration	Seedling: sapling: pole ratio	Seedlings, saplings and pole age-classes occur in adequate proportions to ensure survival of woodland canopy	Oak (<i>Quercus petraea</i>) generally regenerates poorly. In suitable sites, ash (<i>Fraxinus excelsior</i>) can regenerate in large numbers although few seedlings reach pole size
Woodland structure: dead wood	m ³ per hectare; number per hectare	At least 30m ³ /ha of fallen timber greater than 10cm diameter; 30 snags/ha; both categories should include stems greater than 40cm diameter	Dead wood is a valuable resource and an integral part of a healthy, functioning woodland ecosystem
Woodland structure: veteran trees	Number per hectare	No decline	Mature and veteran trees are important habitats for bryophytes, lichens, saproxylic organisms and some bird species. Their retention is important to ensure continuity of habitats/niches and propagule sources
Woodland structure: indicators of local disctinctiveness	Occurrence	No decline	Includes ancient or long-established woodlands (see Perin and Daly, 2010), archaeological and geological features as well as red-data and other rare or localised species. Shannawoneen (site 1600) and Ballynahinch (site 1602) woods are is listed as possible ancient woodlands by Perrin and Daly (2010)
Vegetation composition: native tree cover	Percentage	No decline. Native tree cover not less than 95%	Species reported in Perrin et al. (2008)
Vegetation composition: typical species	Occurrence	A variety of typical native species present, depending on woodland type, including oak (<i>Quercus</i> <i>petraea</i>) and birch (<i>Betula</i> <i>pubescens</i>)	Species reported in Perrin et al. (2008)

28 Oct 2015

Version 1

Page 37 of 42

Vegetation composition: negative indicator species Occurrence

Negative indicator species,
particularly non-native
invasive species, absent or
under controlThe following are the most common non-native
invasive species in this woodland type: beech
(*Fagus sylvatica*), sycamore (*Acer psudoplatanus*)
and rhododendron (Rhododendron ponticum).
Rhododendron and beech were noted in woodlands
surveyed in this SAC by Perrin et al. (2008)

1065 Marsh Fritillary *Euphydryas aurinia*

To maintain the favourable conservation condition of Marsh Fritillary in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Distribution: occupied 1km squares	Number	No decline, subject to natural processes	The presence of marsh fritillary has not been mapped in this SAC so current distribution is unknown
Proof of breeding: larval webs	Number at a representative number of sub-sites	Proof of breeding, confirmed by detection of webs	There is currently no survey data for sub-sites within the SAC
Potential habitat: area	Hectares	Area of potential habitat stable or increasing, subject to natural processes	Potential habitat for marsh fritillary is defined as areas of vegetation where devil's-bit scabious (<i>Succisa pratensis</i>) is present, with mean height less than 50cm and with less than 10% cover of scrub more than 1m tall. There is no figure available for the total area of suitable habitat in the SAC

1106 Salmon *Salmo salar*

To restore the favourable conservation condition of Atlantic Salmon in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Distribution: extent of anadromy	percentage of river accessible	100% of river channels down to second order accessible from estuary	Artificial barriers block salmons' upstream migration, thereby limiting species to lower stretches and restricting access to spawning areas. There are no barriers to migration on the Cashla system. A new proposed regional water supply scheme below Glenicmurrin Lake will have a fish pass incorporated. On the Owenboliska River, there is a fish pass in place at the water regulating sluice below Boliska Lake. There are no barriers to migration on the Owenmore system
Adult spawning fish	Number	Conservation Limit (CL) for each system consistently exceeded	A conservation limit is defined by the North Atlantic Salmon Conservation Organisation (NASCO) as "the spawning stock level that produces long-term average maximum sustainable yield as derived from the adult to adult stock and recruitment relationship". The target is based on the Standing Scientific Committee of the National Salmon Commission's annual model output of CL attainment levels. See SSC (2015). Stock estimates are either derived from direct counts of adults (rod catch, fish counter) or indirectly by fry abundance counts. The Owenmore and Cashla rivers are currently exceeding CL while the Owenboliska is below CL
Salmon fry abundance	Number of fry/5 minutes electrofishing	Maintain or exceed 0+ fry mean catchment-wide abundance threshold value. Currently set at 17 salmon fry/5 minutes sampling	Target is threshold value for rivers currently exceeding their conservation limit (CL)
Out-migrating smolt abundance	Number	No significant decline	Smolt abundance can be negatively affected by a number of impacts such as estuarine pollution, predation and sea lice (<i>Lepeophtheirus salmonis</i>). Marine salmon farming takes place in the estuary of the Owenmore River
Number and distribution of redds	Number and occurrence	No decline in number and distribution of spawning redds due to anthropogenic causes	Salmon spawn in clean gravels. The habitat for salmon is good in the Owenmore and Cashla catchments and improvements in spawning areas and input of gravel has been ongoing in both catchments. Funding has been approved for habitat improvement works in the upper reaches of the Owenboliska system
Water quality	EPA Q value	At least Q4 at all sites sampled by EPA	Q values based on triennial water quality surveys carried out by the Environmental Protection Agency (EPA)

1355 Otter *Lutra lutra*

To maintain the favourable conservation condition of Otter in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes
Distribution	Percentage positive survey sites	No significant decline	Measure based on standard otter survey technique. FCS target, based on 1980/81 survey findings, is 88% in SACs. Current range estimated at 93.6% (Reid et al., 2013)
Extent of terrestrial habitat	Hectares	No significant decline. Area mapped and calculated as 2194.8ha	No field survey. Areas mapped to include 10m terrestrial buffer along shoreline (above HWM and along river banks) identified as critical for otters (NPWS, 2007)
Extent of marine habitat	Hectares	No significant decline. Area mapped and calculated as 139.0ha	No field survey. Area mapped based on evidence that otters tend to forage within 80m of the shoreline (HWM) (NPWS, 2007; Kruuk, 2006)
Extent of freshwater (river) habitat	Kilometres	No significant decline. Length mapped and calculated as 564.0km	River length calculated on the basis that otters will utilise freshwater habitats from estuary to headwaters (Chapman and Chapman, 1982)
Extent of freshwater (lake/lagoon) habitat	Hectares	No significant decline. Area mapped and calculated as 3908.6ha	No field survey. Area mapped based on evidence that otters tend to forage within 80m of the shoreline (NPWS, 2007)
Couching sites and holts	Number	No significant decline	Otters need lying up areas throughout their territory where they are secure from disturbance (Kruuk, 2006; Kruuk and Moorhouse, 1991)
Fish biomass available	Kilograms	No significant decline	Broad diet that varies locally and seasonally, but dominated by fish, in particular salmonids, eels and sticklebacks in freshwater (Bailey and Rochford, 2006; Reid et al., 2013) and wrasse and rockling in coastal waters (Kingston et al., 1999)

1833 Slender Naiad *Najas flexilis*

To maintain the favourable conservation condition of Slender Naiad in Connemara Bog Complex SAC, which is defined by the following list of attributes and targets:

Attribute	Measure	Target	Notes	
Population extent	Hectares; distribution	No change to the spatial extent of <i>Najas flexilis</i> within each lake, subject to natural processes. See map 9 for known locations	See <i>Najas flexilis</i> supporting document for further details	
Population depth	Metres	No change to the depth range of <i>Najas flexilis</i> within each lake, subject to natural processes	See <i>Najas flexilis</i> supporting document for further details	
Population viability	Plant traits	No decline in plant fitness, subject to natural processes	See <i>Najas flexilis</i> supporting document for further details	
Population abundance	Square metres	No change to the cover abundance of Najas flexilis, subject to natural processes	See <i>Najas flexilis</i> supporting document for further details	
Species distribution	Occurrence	No decline, subject to natural processes	See <i>Najas flexilis</i> supporting document for further details	
Habitat extent	Hectares; distribution	No decline, subject to natural processes	See <i>Najas flexilis</i> supporting document for further details	
Hydrological regime: water level fluctuations	Metres	Maintain appropriate natural hydrological regime necessary to support the habitat for the species	See <i>Najas flexilis</i> supporting document for furthe details	
Lake substratum quality	Various	Maintain appropriate substratum type, extent and chemistry to support the populations of the species	See <i>Najas flexilis</i> supporting document for further details	
Water quality	Various	Maintain appropriate water quality to support the populations of the species	See <i>Najas flexilis</i> supporting document for further details	
Acidification status	pH units, mg/l	Maintain appropriate water and sediment pH, alkalinity and cation concentrations to support the populations of <i>Najas flexilis</i> , subject to natural processes	See <i>Najas flexilis</i> supporting document for further details	
Water colour	mg/L PtCo	Maintain appropriate water colour to support the populations of <i>Najas flexilis</i>	See <i>Najas flexilis</i> supporting document for further details	
Associated species	Species composition; abundance	Maintain appropriate associated species and vegetation communities to support the populations of <i>Najas flexilis</i>	See <i>Najas flexilis</i> supporting document for furthe details	
Fringing habitat: area	Hectares	Maintain the area and condition of fringing habitats necessary to support the populations of <i>Najas flexilis</i>	See <i>Najas flexilis</i> supporting document for furthe details	

Map to be read in conjunction with the NPWS Conservation Objectives Document.

2.5

2. Columb			
A C C C C C C C C C C C C C C C C C C C			
A. J.			
2 Contraction of the second se			
find the second			Stand of the stand
0			And
	the state of the s	o fors of for	
		The second so	a stand of the stand
Legend Connemara Bog Complex SAC 002034 OSi Discovery Series County Boundary Lake Habitats 3110 Oligotrophic waters containing very few minerals 3110 / Potential 3130, Oligotrophic waters containing v	of sandy plains (Littorelletalia uniflorarae) rery few minerals of sandy plains (Littorelletalia uniflorarae) / Potential Oligotrophic waters	containing very few minerals of sandy plains (Littorelletalia uniflorarae)	a a company a compan
 3130 Oligotrophic to mesotrophic standing waters with 3160 Natural dystrophic lakes and ponds Potential 3110 Oligotrophic waters containing very few Potential 3110 / Potential 3130, Potential Oligotrophic w Potential 3110 / Potential 3160, Potential Oligotrophic w Potential 3160 Natural dystrophic lakes and ponds Potential 3160 / Potential 3110, Potential Natural dystrophic 	vegetation of the Littorelletea uniflorarae and/or Isoeto-Nanojuncetea minerals of sandy plains (Littorelletalia uniflorarae) vaters containing very few minerals of sandy plains (Littorelletalia uniflorarae) / Potential C vaters containing very few minerals of sandy plains (Littorelletalia uniflorarae) / Potential N ophic lakes and ponds / Potential Oligotrophic waters containing very few minerals of sand	Digotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorarae a latural dystrophic lakes and ponds dy plains (Littorelletalia uniflorarae)	nd/or Isoeto-Nanojuncetea
An Roinn Ealaíon, Oidhreachta agus Gaeltachta Department of Arts, Heritage and the Gaeltacht	MAP 6: CONNEMARA BOG COMPLEX SAC CONSERVATION OBJECTIVES LAKE HABITATS	SITE CODE: SAC 002034; version 3.01. CO. GALWAY	I The mapped boundaries are of an indicative and general nature only. Bo Ordnance Survey of Ireland Licence No EN 0059214. © Ordnar Níl sna teorainneacha ar na léarscáileanna ach nod garshuiomhach ginearálta. Féa comharthaithe. Suirbhéarachta Ordonáis na hÉireann Ceadúnas Uimh EN 005921

0

2.5

Т

7.5

5

10 km

Níl sna teorainneacha ar na léarscáileanna ach nod garshuiomhach ginearálta. Féadfar athbhreithnithe a déanamh ar theorainneacha na gceantar comharthaithe. Suirbhéarachta Ordonáis na hÉireann Rialtas na hÉireann.

Map to be read in conju	Inction with the NPW	/S Conservation O	bjectives Document.

